Almost Everywhere Convergence Questions of Series of Translates of Non-Negative Functions

IF 0.1 Q4 MATHEMATICS
Z. Buczolich
{"title":"Almost Everywhere Convergence Questions of Series of Translates of Non-Negative Functions","authors":"Z. Buczolich","doi":"10.14321/realanalexch.48.1.1663223339","DOIUrl":null,"url":null,"abstract":"This survey paper is based on a talk given at the 44th Summer Symposium in Real Analysis in Paris. This line of research was initiated by a question of Haight and Weizs\\\"aker concerning almost everywhere convergence properties of series of the form $\\sum_{n=1}^{{\\infty}}f(nx)$. A more general, additive version of this problem is the following: Suppose $\\Lambda$ is a discrete infinite set of nonnegative real numbers. We say that $ {\\Lambda}$ is of type 1 if the series $s(x)=\\sum_{\\lambda\\in\\Lambda}f(x+\\lambda)$ satisfies a zero-one law. This means that for any non-negative measurable $f: {{\\mathbb R}}\\to [0,+ {\\infty})$ either the convergence set $C(f, {\\Lambda})=\\{x: s(x)<+ {\\infty} \\}= {{\\mathbb R}}$ modulo sets of Lebesgue zero, or its complement the divergence set $D(f, {\\Lambda})=\\{x: s(x)=+ {\\infty} \\}= {{\\mathbb R}}$ modulo sets of measure zero. If $ {\\Lambda}$ is not of type 1 we say that $ {\\Lambda}$ is of type 2. The exact characterization of type $1$ and type $2$ sets is still not known. The part of the paper discussing results concerning this question is based on several joint papers written at the beginning with J-P. Kahane and D. Mauldin, later with B. Hanson, B. Maga and G. V\\'ertesy. Apart from results from the above project we also cover historic background, other related results and open questions.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.48.1.1663223339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This survey paper is based on a talk given at the 44th Summer Symposium in Real Analysis in Paris. This line of research was initiated by a question of Haight and Weizs\"aker concerning almost everywhere convergence properties of series of the form $\sum_{n=1}^{{\infty}}f(nx)$. A more general, additive version of this problem is the following: Suppose $\Lambda$ is a discrete infinite set of nonnegative real numbers. We say that $ {\Lambda}$ is of type 1 if the series $s(x)=\sum_{\lambda\in\Lambda}f(x+\lambda)$ satisfies a zero-one law. This means that for any non-negative measurable $f: {{\mathbb R}}\to [0,+ {\infty})$ either the convergence set $C(f, {\Lambda})=\{x: s(x)<+ {\infty} \}= {{\mathbb R}}$ modulo sets of Lebesgue zero, or its complement the divergence set $D(f, {\Lambda})=\{x: s(x)=+ {\infty} \}= {{\mathbb R}}$ modulo sets of measure zero. If $ {\Lambda}$ is not of type 1 we say that $ {\Lambda}$ is of type 2. The exact characterization of type $1$ and type $2$ sets is still not known. The part of the paper discussing results concerning this question is based on several joint papers written at the beginning with J-P. Kahane and D. Mauldin, later with B. Hanson, B. Maga and G. V\'ertesy. Apart from results from the above project we also cover historic background, other related results and open questions.
非负函数平移级数的几乎处处收敛问题
这篇调查论文是基于在巴黎第44届真实分析夏季研讨会上的一次演讲。这一研究路线是由Haight和Weizsäker的一个问题发起的,该问题涉及形式为$\sum_{n=1}^{{\infty}}f(nx)$的级数的几乎处处收敛性质。这个问题的一个更一般的、可加的版本如下:假设$\Lambda$是一个非负实数的离散无限集。如果级数$s(x)=\sum_{\lambda\in\Lambda}f(x+\lambda)$满足0 - 1定律,我们说$ {\Lambda}$是类型1。这意味着对于任何非负可测$f: {{\mathbb R}}\to [0,+ {\infty})$,收敛集$C(f, {\Lambda})=\{x: s(x)<+ {\infty} \}= {{\mathbb R}}$是勒贝格零的模集,或者它的补散度集$D(f, {\Lambda})=\{x: s(x)=+ {\infty} \}= {{\mathbb R}}$是测度零的模集。如果$ {\Lambda}$不属于类型1,我们就说$ {\Lambda}$属于类型2。类型$1$和类型$2$集合的确切特征仍然是未知的。本文讨论这一问题的结果的部分是基于开始时与J-P共同撰写的几篇论文。Kahane和D. Mauldin,后来还有B. Hanson, B. Maga和G. vacimrtesy。除了上述项目的结果外,我们还包括历史背景,其他相关结果和悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信