The index of families of projective operators

IF 0.5 Q3 MATHEMATICS
Alexandre Baldare
{"title":"The index of families of projective operators","authors":"Alexandre Baldare","doi":"10.2140/akt.2023.8.285","DOIUrl":null,"url":null,"abstract":"Let $1 \\to \\Gamma \\to \\tilde{G} \\to G \\to 1$ be a central extension by an abelian finite group. In this paper, we compute the index of families of $\\tilde{G}$-transversally elliptic operators on a $G$-principal bundle $P$. We then introduce the notion of families of projective operators on fibrations equipped with an Azumaya bundle $\\mathcal{A}$. We define and compute the index of such families using the cohomological index formula for families of $SU(N)$-transversally elliptic operators. More precisely, a family $A$ of projective operators can be pulled back in a family $\\tilde{A}$ of $SU(N)$-transversally elliptic operators on the $PU(N)$-principal bundle of trivialisations of $\\mathcal{A}$. Through the distributional index of $\\tilde{A}$, we can define an index for the family $A$ of projective operators and using the index formula in equivariant cohomology for families of $SU(N)$-transversally elliptic operators, we derive an explicit cohomological index formula in de Rham cohomology. Once this is done, we define and compute the index of families of projective Dirac operators. As a second application of our computation of the index of families of $\\tilde{G}$-transversally elliptic operators on a $G$-principal bundle $P$, we consider the special case of a family of $Spin(2n)$-transversally elliptic Dirac operators over the bundle of oriented orthonormal frames of an oriented fibration and we relate its distributional index with the index of the corresponding family of projective Dirac operators.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $1 \to \Gamma \to \tilde{G} \to G \to 1$ be a central extension by an abelian finite group. In this paper, we compute the index of families of $\tilde{G}$-transversally elliptic operators on a $G$-principal bundle $P$. We then introduce the notion of families of projective operators on fibrations equipped with an Azumaya bundle $\mathcal{A}$. We define and compute the index of such families using the cohomological index formula for families of $SU(N)$-transversally elliptic operators. More precisely, a family $A$ of projective operators can be pulled back in a family $\tilde{A}$ of $SU(N)$-transversally elliptic operators on the $PU(N)$-principal bundle of trivialisations of $\mathcal{A}$. Through the distributional index of $\tilde{A}$, we can define an index for the family $A$ of projective operators and using the index formula in equivariant cohomology for families of $SU(N)$-transversally elliptic operators, we derive an explicit cohomological index formula in de Rham cohomology. Once this is done, we define and compute the index of families of projective Dirac operators. As a second application of our computation of the index of families of $\tilde{G}$-transversally elliptic operators on a $G$-principal bundle $P$, we consider the special case of a family of $Spin(2n)$-transversally elliptic Dirac operators over the bundle of oriented orthonormal frames of an oriented fibration and we relate its distributional index with the index of the corresponding family of projective Dirac operators.
投影算子族的索引
设$1\to\Gamma\to\tilde{G}\toG\to1$是阿贝尔有限群的中心扩张。在本文中,我们计算了$G$-主丛$P$上$\tilde{G}$-横向椭圆算子族的指数。然后,我们引入了配备有Azumaya丛$\mathcal{A}$的fibration上的投影算子族的概念。我们使用$SU(N)$-横向椭圆算子族的上同调指数公式来定义和计算这些族的指数。更准确地说,在$\mathcal{a}$的平凡化的$PU(N)$主丛上的$SU(N)$-横向椭圆算子的$\tilde{a}$族中,可以拉回投影算子的族$a$。通过$\tilde{A}$的分布索引,我们可以定义投影算子族$A$的一个索引,并利用$SU(N)$-横椭圆算子族等变上同调中的索引公式,导出de Rham上同调的一个显式上同调索引公式。一旦完成,我们定义并计算投影Dirac算子族的索引。作为我们计算$G$-主丛$P$上$\tilde{G}$-横向椭圆算子族的索引的第二个应用,我们考虑了在有向fibration的有向正交框架束上的$Spin(2n)$-横向椭圆Dirac算子族的特殊情况,并将其分布指数与相应的投影Dirac算子簇的指数联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信