ROC CURVE ANALYSIS OF DIFFERENT HYBRID FEATURE DESCRIPTORS USING MULTI CLASSIFIERS

Q4 Earth and Planetary Sciences
S. Kailasam, E. Sankari, R. Kumuthini
{"title":"ROC CURVE ANALYSIS OF DIFFERENT HYBRID FEATURE DESCRIPTORS USING MULTI CLASSIFIERS","authors":"S. Kailasam, E. Sankari, R. Kumuthini","doi":"10.11113/aej.v13.18804","DOIUrl":null,"url":null,"abstract":"Tremendous success of machine learning algorithms at pattern recognition creates interest in new inventions. Machine learning in an era of big data is that significant hierarchical relationships within the data can be discovered algorithmically than other handcraft like features. In this study, Convolutional Neural Network (CNN) is used as feature descriptors in pulmonary malignancy prediction. Various feature descriptors such as Histogram of Oriented Gradient (HOG), Extended Histogram of Oriented Gradient (EXHOG) and Linear Binary Pattern (LBP) descriptors are analyzed with classifiers such as Random Forest (RF), Decision Tree (DT), K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) for Computed Tomography (CT) The phenotype features of pulmonary nodules are important cues for identification. The nodule solidity is an important cue for white blob area identification. The method is analyzed in Lung Image Database Consortium (LIDC) dataset. Receivers Operating Characteristics (ROC) curves show the graphical summaries of detectors performance. It is proved that CNN based feature extraction with SVM classifier works well in pulmonary malignancy prediction.","PeriodicalId":36749,"journal":{"name":"ASEAN Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/aej.v13.18804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Tremendous success of machine learning algorithms at pattern recognition creates interest in new inventions. Machine learning in an era of big data is that significant hierarchical relationships within the data can be discovered algorithmically than other handcraft like features. In this study, Convolutional Neural Network (CNN) is used as feature descriptors in pulmonary malignancy prediction. Various feature descriptors such as Histogram of Oriented Gradient (HOG), Extended Histogram of Oriented Gradient (EXHOG) and Linear Binary Pattern (LBP) descriptors are analyzed with classifiers such as Random Forest (RF), Decision Tree (DT), K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) for Computed Tomography (CT) The phenotype features of pulmonary nodules are important cues for identification. The nodule solidity is an important cue for white blob area identification. The method is analyzed in Lung Image Database Consortium (LIDC) dataset. Receivers Operating Characteristics (ROC) curves show the graphical summaries of detectors performance. It is proved that CNN based feature extraction with SVM classifier works well in pulmonary malignancy prediction.
多分类器对不同混合特征描述子的Roc曲线分析
机器学习算法在模式识别方面的巨大成功激发了人们对新发明的兴趣。大数据时代的机器学习是数据中重要的层次关系可以通过算法发现,而不是其他手工特征。本研究将卷积神经网络(CNN)作为肺恶性肿瘤预测的特征描述符。利用随机森林(RF)、决策树(DT)、k近邻(KNN)和支持向量机(SVM)等分类器对定向梯度直方图(HOG)、扩展定向梯度直方图(EXHOG)和线性二值模式(LBP)描述符等多种特征描述符进行分析,发现肺结节的表型特征是识别的重要线索。结节的坚固性是白斑区域识别的重要线索。在肺图像数据库联盟(LIDC)数据集上对该方法进行了分析。接收机工作特性(ROC)曲线显示了探测器性能的图形总结。实验证明,基于CNN的SVM分类器特征提取在肺恶性肿瘤预测中效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ASEAN Engineering Journal
ASEAN Engineering Journal Engineering-Engineering (all)
CiteScore
0.60
自引率
0.00%
发文量
75
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信