{"title":"Experiment on self-sharpening fine super-hard abrasive tool","authors":"Feng Kaiping, Zhou Zhao-zhong, H. Fan, J. Yuan","doi":"10.1504/IJNM.2017.10004716","DOIUrl":null,"url":null,"abstract":"In order to improve the efficiency of ultra-precision processing, the self-sharpening fine super-hard abrasive tool is presented. Diamond abrasive tool samples adding three different soluble fillers Zn, CaO and SiO2 were prepared separately and soaked in dressing dissolvent to verify dissolving capacity of the soluble fillers in the dressing dissolvent. Grinding experiments of using three novel abrasive tools were carried out compared with conventional super-hard diamond abrasive tool. The experiment result showed that the combination of abrasive adding filler Zn and FeCl3 solution showed good performance, the surface roughness of the K9 glass reduced from Ra = 1.9307 µm to Ra = 0.1011 µm after 4 h grinding. During grinding, soluble fillers exposed on the abrasive surface were dissolved by dressing dissolvent, worn abrasive grains shed, new abrasive grains were exposed to achieve abrasive dressing.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":"13 1","pages":"97"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2017.10004716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In order to improve the efficiency of ultra-precision processing, the self-sharpening fine super-hard abrasive tool is presented. Diamond abrasive tool samples adding three different soluble fillers Zn, CaO and SiO2 were prepared separately and soaked in dressing dissolvent to verify dissolving capacity of the soluble fillers in the dressing dissolvent. Grinding experiments of using three novel abrasive tools were carried out compared with conventional super-hard diamond abrasive tool. The experiment result showed that the combination of abrasive adding filler Zn and FeCl3 solution showed good performance, the surface roughness of the K9 glass reduced from Ra = 1.9307 µm to Ra = 0.1011 µm after 4 h grinding. During grinding, soluble fillers exposed on the abrasive surface were dissolved by dressing dissolvent, worn abrasive grains shed, new abrasive grains were exposed to achieve abrasive dressing.