High-frequency monitoring enables operational opportunities to reduce the dissolved organic carbon (DOC) load in Germany’s largest drinking water reservoir
{"title":"High-frequency monitoring enables operational opportunities to reduce the dissolved organic carbon (DOC) load in Germany’s largest drinking water reservoir","authors":"Qing Zhan, X. Kong, K. Rinke","doi":"10.1080/20442041.2021.1987796","DOIUrl":null,"url":null,"abstract":"ABSTRACT Rising dissolved organic carbon (DOC) is interfering with drinking water production. While strategies for DOC removal during water treatment have been successfully implemented, the potential for DOC load reduction by optimized reservoir operation is not yet fully explored, mainly constrained by data paucity on real-time DOC dynamics. In this study, we utilized the emerging in situ high-frequency (HF) monitoring technique for DOC and developed a simulation–operation framework that promotes DOC mitigation in Germany’s largest drinking water reservoir. Rappbode Reservoir is embedded in a network of smaller upstream reservoirs from which Königshütte Reservoir delivers the most water but can also be operated as a bypass system. Using high-frequency monitoring of DOC concentrations and discharge at the inflows and outflows, we constructed a mass balance model that simulated the DOC dynamics in the reservoir, allowing us to explore alternative operation regimes that deliver the same amount of water but a lower DOC load. Our results show that, through rapid decision-making that enables bypassing of water with high DOC concentrations around the drinking water reservoir, the optimized operation regime is able to reduce DOC load of the drinking water reservoir by 25 ± 3%. Therefore, our proposed operational strategy to minimize DOC loading to reservoirs is promising.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"12 1","pages":"245 - 260"},"PeriodicalIF":2.7000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inland Waters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/20442041.2021.1987796","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Rising dissolved organic carbon (DOC) is interfering with drinking water production. While strategies for DOC removal during water treatment have been successfully implemented, the potential for DOC load reduction by optimized reservoir operation is not yet fully explored, mainly constrained by data paucity on real-time DOC dynamics. In this study, we utilized the emerging in situ high-frequency (HF) monitoring technique for DOC and developed a simulation–operation framework that promotes DOC mitigation in Germany’s largest drinking water reservoir. Rappbode Reservoir is embedded in a network of smaller upstream reservoirs from which Königshütte Reservoir delivers the most water but can also be operated as a bypass system. Using high-frequency monitoring of DOC concentrations and discharge at the inflows and outflows, we constructed a mass balance model that simulated the DOC dynamics in the reservoir, allowing us to explore alternative operation regimes that deliver the same amount of water but a lower DOC load. Our results show that, through rapid decision-making that enables bypassing of water with high DOC concentrations around the drinking water reservoir, the optimized operation regime is able to reduce DOC load of the drinking water reservoir by 25 ± 3%. Therefore, our proposed operational strategy to minimize DOC loading to reservoirs is promising.
期刊介绍:
Inland Waters is the peer-reviewed, scholarly outlet for original papers that advance science within the framework of the International Society of Limnology (SIL). The journal promotes understanding of inland aquatic ecosystems and their management. Subject matter parallels the content of SIL Congresses, and submissions based on presentations are encouraged.
All aspects of physical, chemical, and biological limnology are appropriate, as are papers on applied and regional limnology. The journal also aims to publish articles resulting from plenary lectures presented at SIL Congresses and occasional synthesis articles, as well as issues dedicated to a particular theme, specific water body, or aquatic ecosystem in a geographical area. Publication in the journal is not restricted to SIL members.