Linear Arboricity of 1-Planar Graphs

IF 0.5 4区 数学 Q3 MATHEMATICS
Weifan Wang, Juan Liu, Yiqiao Wang
{"title":"Linear Arboricity of 1-Planar Graphs","authors":"Weifan Wang, Juan Liu, Yiqiao Wang","doi":"10.7151/dmgt.2453","DOIUrl":null,"url":null,"abstract":"Abstract The linear arboricity la(G) of a graph G is the minimum number of linear forests that partition the edges of G. In 1981, Akiyama, Exoo and Harary conjectured that ⌈ Δ(G)2 ⌉≤la(G)≤⌈ Δ(G)+12 ⌉ \\left\\lceil {{{\\Delta \\left( G \\right)} \\over 2}} \\right\\rceil \\le la\\left( G \\right) \\le \\left\\lceil {{{\\Delta \\left( G \\right) + 1} \\over 2}} \\right\\rceil for any simple graph G. A graph G is 1-planar if it can be drawn in the plane so that each edge has at most one crossing. In this paper, we confirm the conjecture for 1-planar graphs G with Δ(G) ≥ 13.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2453","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The linear arboricity la(G) of a graph G is the minimum number of linear forests that partition the edges of G. In 1981, Akiyama, Exoo and Harary conjectured that ⌈ Δ(G)2 ⌉≤la(G)≤⌈ Δ(G)+12 ⌉ \left\lceil {{{\Delta \left( G \right)} \over 2}} \right\rceil \le la\left( G \right) \le \left\lceil {{{\Delta \left( G \right) + 1} \over 2}} \right\rceil for any simple graph G. A graph G is 1-planar if it can be drawn in the plane so that each edge has at most one crossing. In this paper, we confirm the conjecture for 1-planar graphs G with Δ(G) ≥ 13.
1-平面图的线性拟合性
图G的线性树性la(G)是划分G边的线性森林的最小个数。1981年,Akiyama, Exoo和Harary推测出了≤Δ(G)2≤la(G)≤≤≤Δ(G)+12 \left\lceil {{{\Delta \left(g) \right)} \over 2}} \right\rceil \le 拉\left(g) \right) \le \left\lceil {{{\Delta \left(g) \right) + 1} \over 2}} \right\rceil 对于任何简单图G,如果图G可以在平面上画出来,使得每条边最多有一个交叉点,那么它就是一个平面图G。本文证实了对于Δ(G)≥13的1-平面图G的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信