Chen Hu, Liyuan Zhang, R. Zhu, L. Pandian, Yimin Wang, J. Glodo
{"title":"Novel Ultrafast Lu2O3:Yb Ceramics for Future HEP Applications","authors":"Chen Hu, Liyuan Zhang, R. Zhu, L. Pandian, Yimin Wang, J. Glodo","doi":"10.3390/instruments6040067","DOIUrl":null,"url":null,"abstract":"Inorganic scintillators activated by charge transfer luminescence Yb3+ are considered promising ultrafast material to break the ps timing barrier for future high energy physics applications. Inorganic scintillators in ceramic form are potentially more cost-effective than crystals because of their lower fabrication temperature and no need for aftergrowth mechanical processing. This paper reports an investigation on Lu2O3:Yb and Lu2xY2(1−x)O3:Yb scintillating ceramic samples fabricated by Radiation Monitoring Devices Inc. All samples show X-ray excited luminescence peaked at 370 nm. Ultrafast decay time of 1.1 ns was observed by using a microchannel plate-photomultiplier tube-based test bench at Caltech. Considering its intrinsic high density (9.4 g/cm3), Lu2O3:Yb ceramics are promising for future time of fight application for high energy physics experiments.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments6040067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Inorganic scintillators activated by charge transfer luminescence Yb3+ are considered promising ultrafast material to break the ps timing barrier for future high energy physics applications. Inorganic scintillators in ceramic form are potentially more cost-effective than crystals because of their lower fabrication temperature and no need for aftergrowth mechanical processing. This paper reports an investigation on Lu2O3:Yb and Lu2xY2(1−x)O3:Yb scintillating ceramic samples fabricated by Radiation Monitoring Devices Inc. All samples show X-ray excited luminescence peaked at 370 nm. Ultrafast decay time of 1.1 ns was observed by using a microchannel plate-photomultiplier tube-based test bench at Caltech. Considering its intrinsic high density (9.4 g/cm3), Lu2O3:Yb ceramics are promising for future time of fight application for high energy physics experiments.