{"title":"Transformer Health Monitoring Using Dissolved Gas Analysis","authors":"C. Walker, Ahmad Y. Al Rashdan, V. Agarwal","doi":"10.36001/ijphm.2022.v13i2.3141","DOIUrl":null,"url":null,"abstract":"As integral components of any power plant, transformers sup-ply the generated electricity to the grid. However, the trans-former’s cellulose-based paper insulation and the mineral oilin which it is immersed break down over time under stan-dard operating conditions—or more rapidly due to potentialfaults within the system. This technical brief exhibits a col-lection of diagnostic and prognostic techniques that utilitiescan adopted in lieu of labor-intense periodic preventive main-tenance routines. Furthermore, prognostic models have beenincorporated using the latest version of the Institute of Elec-trical and Electronics Engineers (IEEE) standard (IEEE StdC57.104TM-2019) for dissolved gas analysis (DGA), thusexpanding it to include estimation of the time to maintenance.Overall, four different methodologies are explained, each ofwhich aid in determining a transformer’s state of health. Thesemethodologies include the Chendong model, the IEEE C57.91-2011 thermal life consumption model, a diagnostic model forDGA, and a prognostic model for DGA that uses an autore-gressive integrated moving average (ARIMA) model. An ad-ditional improvement for estimating missing system parame-ters from monitoring data (i.e., a tool for parameter estimationutilizing Powell’s method) is presented, enabling the IEEEthermal life consumption model to benefit not only the col-laborating power plant, but also the power industry at large.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2022.v13i2.3141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As integral components of any power plant, transformers sup-ply the generated electricity to the grid. However, the trans-former’s cellulose-based paper insulation and the mineral oilin which it is immersed break down over time under stan-dard operating conditions—or more rapidly due to potentialfaults within the system. This technical brief exhibits a col-lection of diagnostic and prognostic techniques that utilitiescan adopted in lieu of labor-intense periodic preventive main-tenance routines. Furthermore, prognostic models have beenincorporated using the latest version of the Institute of Elec-trical and Electronics Engineers (IEEE) standard (IEEE StdC57.104TM-2019) for dissolved gas analysis (DGA), thusexpanding it to include estimation of the time to maintenance.Overall, four different methodologies are explained, each ofwhich aid in determining a transformer’s state of health. Thesemethodologies include the Chendong model, the IEEE C57.91-2011 thermal life consumption model, a diagnostic model forDGA, and a prognostic model for DGA that uses an autore-gressive integrated moving average (ARIMA) model. An ad-ditional improvement for estimating missing system parame-ters from monitoring data (i.e., a tool for parameter estimationutilizing Powell’s method) is presented, enabling the IEEEthermal life consumption model to benefit not only the col-laborating power plant, but also the power industry at large.