{"title":"On curvature tensors of Norden and metallic pseudo-Riemannian manifolds","authors":"A. Blaga, Antonella Nannicini","doi":"10.1515/coma-2019-0008","DOIUrl":null,"url":null,"abstract":"Abstract We study some properties of curvature tensors of Norden and, more generally, metallic pseudo-Riemannian manifolds. We introduce the notion of J-sectional and J-bisectional curvature of a metallic pseudo-Riemannian manifold (M, J, g) and study their properties.We prove that under certain assumptions, if the manifold is locally metallic, then the Riemann curvature tensor vanishes. Using a Norden structure (J, g) on M, we consider a family of metallic pseudo-Riemannian structures {Ja,b}a,b∈ℝ and show that for a ≠ 0, the J-sectional and J-bisectional curvatures of M coincide with the Ja,b-sectional and Ja,b-bisectional curvatures, respectively. We also give examples of Norden and metallic structures on ℝ2n.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"6 1","pages":"150 - 159"},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2019-0008","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2019-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15
Abstract
Abstract We study some properties of curvature tensors of Norden and, more generally, metallic pseudo-Riemannian manifolds. We introduce the notion of J-sectional and J-bisectional curvature of a metallic pseudo-Riemannian manifold (M, J, g) and study their properties.We prove that under certain assumptions, if the manifold is locally metallic, then the Riemann curvature tensor vanishes. Using a Norden structure (J, g) on M, we consider a family of metallic pseudo-Riemannian structures {Ja,b}a,b∈ℝ and show that for a ≠ 0, the J-sectional and J-bisectional curvatures of M coincide with the Ja,b-sectional and Ja,b-bisectional curvatures, respectively. We also give examples of Norden and metallic structures on ℝ2n.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.