Algebraic analysis and reconstruction of the Philips Pavilion’s hyperbolic paraboloid surfaces

IF 1.6 0 ARCHITECTURE
T. Fischer, Thomas Wortmann
{"title":"Algebraic analysis and reconstruction of the Philips Pavilion’s hyperbolic paraboloid surfaces","authors":"T. Fischer, Thomas Wortmann","doi":"10.1177/14780771221082253","DOIUrl":null,"url":null,"abstract":"In this article, we present a procedure to derive algebraic descriptions from geometric descriptions of trimmed hyperbolic paraboloid (or ‘hypar’) surfaces. We contextualise this procedure historically, and we illustrate its application using the 1958 Philips Pavilion by Le Corbusier and Iannis Xenakis as a case study. The procedure uses parametric modelling and computational optimisation to converge on close algebraic approximations of hyperbolic paraboloid geometry through a successive breakdown of vast search spaces. It departs from coordinate data of three or four vertices of a geometrically described hyperbolic paraboloid and yields the surface’s two quadratic coefficients, the coordinates of its centroid location and the rotation angles of its spatial orientation. The procedure exemplifies the under-explored analytical (as opposed to generative) use of computational optimisation and parametric modelling in the field of architectural computing.","PeriodicalId":45139,"journal":{"name":"International Journal of Architectural Computing","volume":"20 1","pages":"61 - 75"},"PeriodicalIF":1.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Architectural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14780771221082253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a procedure to derive algebraic descriptions from geometric descriptions of trimmed hyperbolic paraboloid (or ‘hypar’) surfaces. We contextualise this procedure historically, and we illustrate its application using the 1958 Philips Pavilion by Le Corbusier and Iannis Xenakis as a case study. The procedure uses parametric modelling and computational optimisation to converge on close algebraic approximations of hyperbolic paraboloid geometry through a successive breakdown of vast search spaces. It departs from coordinate data of three or four vertices of a geometrically described hyperbolic paraboloid and yields the surface’s two quadratic coefficients, the coordinates of its centroid location and the rotation angles of its spatial orientation. The procedure exemplifies the under-explored analytical (as opposed to generative) use of computational optimisation and parametric modelling in the field of architectural computing.
飞利浦馆双曲抛物面的代数分析与重建
在这篇文章中,我们提出了一种从裁剪双曲抛物面(或“半”)曲面的几何描述中导出代数描述的方法。我们将这一过程置于历史背景中,并以勒·柯布西耶和伊安尼斯·谢纳基斯于1958年设计的飞利浦展馆为例说明其应用。该程序使用参数化建模和计算优化,通过大量搜索空间的连续分解,收敛于双曲抛物面几何的密切代数近似。它从几何上描述的双曲抛物面的三个或四个顶点的坐标数据出发,得到曲面的两个二次系数,其质心位置的坐标和其空间方向的旋转角度。该过程体现了在建筑计算领域中计算优化和参数化建模的分析(而不是生成)使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
17.60%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信