Exchange Networks with Stochastic Matching

IF 0.6 Q4 ECONOMICS
Games Pub Date : 2022-12-27 DOI:10.3390/g14010002
A. Dragicevic
{"title":"Exchange Networks with Stochastic Matching","authors":"A. Dragicevic","doi":"10.3390/g14010002","DOIUrl":null,"url":null,"abstract":"This paper tries to prove that the outcomes stemming from interactions on assignment markets bring about coordination in case of a stochastic matching subject to various forms of expectations. We consider an exchange network with stochastic matching between the pairs of players and analyze the dynamics of bargaining in such a market. The cases of convergent expectations, divergent expectations and of social preferences are studied. The extension of earlier works lies in the consideration of a stochastic matching on a graph dependent on the weights of edges. The results show that, in all three cases, the dynamics converges rapidly to the generalized Nash bargaining solution, which is an equilibrium that combines notions of stability and fairness. In the first two scenarios, the numerical simulations reveal that the convergence toward a fixed point is speedily achieved at the value of the outside option. In the third scenario, the fixed point promptly converges to the value of the outside option supplemented by the surplus share.","PeriodicalId":35065,"journal":{"name":"Games","volume":"14 1","pages":"2"},"PeriodicalIF":0.6000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/g14010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper tries to prove that the outcomes stemming from interactions on assignment markets bring about coordination in case of a stochastic matching subject to various forms of expectations. We consider an exchange network with stochastic matching between the pairs of players and analyze the dynamics of bargaining in such a market. The cases of convergent expectations, divergent expectations and of social preferences are studied. The extension of earlier works lies in the consideration of a stochastic matching on a graph dependent on the weights of edges. The results show that, in all three cases, the dynamics converges rapidly to the generalized Nash bargaining solution, which is an equilibrium that combines notions of stability and fairness. In the first two scenarios, the numerical simulations reveal that the convergence toward a fixed point is speedily achieved at the value of the outside option. In the third scenario, the fixed point promptly converges to the value of the outside option supplemented by the surplus share.
具有随机匹配的交换网络
本文试图证明,在随机匹配主体与各种形式的期望的情况下,分配市场互动产生的结果会带来协调。我们考虑了一个参与者对之间具有随机匹配的交换网络,并分析了这种市场中讨价还价的动力学。研究了趋同期望、发散期望和社会偏好的情况。早期工作的扩展在于考虑依赖于边的权重的图上的随机匹配。结果表明,在所有三种情况下,动力学都快速收敛于广义纳什讨价还价解,这是一个结合了稳定性和公平性概念的均衡。在前两种情况下,数值模拟表明,在外部选项的值下,可以快速实现向固定点的收敛。在第三种情况下,不动点迅速收敛到由盈余份额补充的外部期权的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Games
Games Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.60
自引率
11.10%
发文量
65
审稿时长
11 weeks
期刊介绍: Games (ISSN 2073-4336) is an international, peer-reviewed, quick-refereeing open access journal (free for readers), which provides an advanced forum for studies related to strategic interaction, game theory and its applications, and decision making. The aim is to provide an interdisciplinary forum for all behavioral sciences and related fields, including economics, psychology, political science, mathematics, computer science, and biology (including animal behavior). To guarantee a rapid refereeing and editorial process, Games follows standard publication practices in the natural sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信