Weyl Modules for Toroidal Lie Algebras

Pub Date : 2022-12-20 DOI:10.1007/s10468-022-10187-6
Sudipta Mukherjee, Santosha Kumar Pattanayak, Sachin S. Sharma
{"title":"Weyl Modules for Toroidal Lie Algebras","authors":"Sudipta Mukherjee,&nbsp;Santosha Kumar Pattanayak,&nbsp;Sachin S. Sharma","doi":"10.1007/s10468-022-10187-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study Weyl modules for a toroidal Lie algebra <span>\\(\\mathcal {T}\\)</span> with arbitrary <i>n</i> variables. Using the work of Rao (Pac. J. Math. <b>171</b>(2), 511–528 1995), we prove that the level one global Weyl modules of <span>\\(\\mathcal {T}\\)</span> are isomorphic to suitable submodules of a Fock space representation of <span>\\(\\mathcal {T}\\)</span> up to a twist. As an application, we compute the graded character of the level one local Weyl module of <span>\\(\\mathcal {T}\\)</span>, thereby generalising the work of Kodera (Lett. Math. Phys. <b>110</b>(11) 3053–3080 2020).</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-022-10187-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study Weyl modules for a toroidal Lie algebra \(\mathcal {T}\) with arbitrary n variables. Using the work of Rao (Pac. J. Math. 171(2), 511–528 1995), we prove that the level one global Weyl modules of \(\mathcal {T}\) are isomorphic to suitable submodules of a Fock space representation of \(\mathcal {T}\) up to a twist. As an application, we compute the graded character of the level one local Weyl module of \(\mathcal {T}\), thereby generalising the work of Kodera (Lett. Math. Phys. 110(11) 3053–3080 2020).

分享
查看原文
环面李代数的Weyl模
在本文中,我们研究了具有任意 n 个变量的环形李代数(\mathcal {T}\)的 Weyl 模块。利用拉奥(Pac.J. Math.171(2), 511-528 1995),我们证明了 \(\mathcal {T}\) 的一级全局韦尔模块是与\(\mathcal {T}\) 的 Fock 空间表示的合适子模块同构的,直到扭转为止。作为应用,我们计算了 \(\mathcal {T}\) 的一级局部韦尔模块的分级特征,从而推广了柯德拉的工作(Lett.Math.110(11) 3053-3080 2020)的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信