Global mass-preserving solutions to a chemotaxis-fluid model involving Dirichlet boundary conditions for the signal

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yulan Wang, M. Winkler, Zhaoyin Xiang
{"title":"Global mass-preserving solutions to a chemotaxis-fluid model involving Dirichlet boundary conditions for the signal","authors":"Yulan Wang, M. Winkler, Zhaoyin Xiang","doi":"10.1142/s0219530521500275","DOIUrl":null,"url":null,"abstract":"The chemotaxis-Stokes system [Formula: see text] is considered subject to the boundary condition [Formula: see text] with [Formula: see text] and a given nonnegative function [Formula: see text]. In contrast to the well-studied case when the second requirement herein is replaced by a homogeneous Neumann boundary condition for [Formula: see text], the Dirichlet condition imposed here seems to destroy a natural energy-like property that has formed a core ingredient in the literature by providing comprehensive regularity features of the latter problem. This paper attempts to suitably cope with accordingly poor regularity information in order to nevertheless derive a statement on global existence within a generalized framework of solvability which involves appropriately mild requirements on regularity, but which maintains mass conservation in the first component as a key solution property.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

Abstract

The chemotaxis-Stokes system [Formula: see text] is considered subject to the boundary condition [Formula: see text] with [Formula: see text] and a given nonnegative function [Formula: see text]. In contrast to the well-studied case when the second requirement herein is replaced by a homogeneous Neumann boundary condition for [Formula: see text], the Dirichlet condition imposed here seems to destroy a natural energy-like property that has formed a core ingredient in the literature by providing comprehensive regularity features of the latter problem. This paper attempts to suitably cope with accordingly poor regularity information in order to nevertheless derive a statement on global existence within a generalized framework of solvability which involves appropriately mild requirements on regularity, but which maintains mass conservation in the first component as a key solution property.
含Dirichlet边界条件的趋化流体模型的全局质量保持解
趋化- stokes系统[公式:见文]被认为服从边界条件[公式:见文]和一个给定的非负函数[公式:见文][公式:见文]。与用齐次诺伊曼边界条件代替本文的第二个要求的充分研究情况相反,这里施加的狄利克雷条件似乎破坏了一种天然的类能性质,这种性质通过提供后一个问题的全面规律性特征而在文献中形成了核心成分。本文试图适当地处理相应的弱正则性信息,以便在广义可解框架内推导出一个关于整体存在性的陈述,该陈述对正则性的要求适当温和,但在第一个分量中保持质量守恒作为关键解的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信