{"title":"Global mass-preserving solutions to a chemotaxis-fluid model involving Dirichlet boundary conditions for the signal","authors":"Yulan Wang, M. Winkler, Zhaoyin Xiang","doi":"10.1142/s0219530521500275","DOIUrl":null,"url":null,"abstract":"The chemotaxis-Stokes system [Formula: see text] is considered subject to the boundary condition [Formula: see text] with [Formula: see text] and a given nonnegative function [Formula: see text]. In contrast to the well-studied case when the second requirement herein is replaced by a homogeneous Neumann boundary condition for [Formula: see text], the Dirichlet condition imposed here seems to destroy a natural energy-like property that has formed a core ingredient in the literature by providing comprehensive regularity features of the latter problem. This paper attempts to suitably cope with accordingly poor regularity information in order to nevertheless derive a statement on global existence within a generalized framework of solvability which involves appropriately mild requirements on regularity, but which maintains mass conservation in the first component as a key solution property.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8
Abstract
The chemotaxis-Stokes system [Formula: see text] is considered subject to the boundary condition [Formula: see text] with [Formula: see text] and a given nonnegative function [Formula: see text]. In contrast to the well-studied case when the second requirement herein is replaced by a homogeneous Neumann boundary condition for [Formula: see text], the Dirichlet condition imposed here seems to destroy a natural energy-like property that has formed a core ingredient in the literature by providing comprehensive regularity features of the latter problem. This paper attempts to suitably cope with accordingly poor regularity information in order to nevertheless derive a statement on global existence within a generalized framework of solvability which involves appropriately mild requirements on regularity, but which maintains mass conservation in the first component as a key solution property.