F. Akhmetova, Y. Aubakirov, Z. Tashmukhambetova, L. Sassykova, H. Arbag, A. Kurmangaliyeva
{"title":"Recycling of waste plastics to liquid fuel mixture over composite zeolites catalysts","authors":"F. Akhmetova, Y. Aubakirov, Z. Tashmukhambetova, L. Sassykova, H. Arbag, A. Kurmangaliyeva","doi":"10.15328/cb1117","DOIUrl":null,"url":null,"abstract":"Plastic waste production and consumption is increasing at an alarming rate with the increase of the human population, rapid economic growth, continuous urbanization, and changes in lifestyle. In addition, the short life span of plastic accelerates the production of plastic waste on a daily basis. Plastic waste recycling is carried out in different ways, but in most developing countries, open or landfill disposal is a common practice for plastic waste management. Plastic recycling into feedstocks, also known as chemical recycling, is encouraged all over the world. One such area is the thermal and catalytic thermal degradation of plastics into hydrocarbon fractions, which can be used as high-quality motor fuel after appropriate processing. Hydrocracking in the presence of a catalyst is a promising method of converting waste plastic materials to high quality liquid transportation fuels with decreased amounts of olefins and heteroatoms such as S, N, Cl, N, and O.\nThe article deals with the study of hydrocracking of waste plastic into high quality liquid fuel on various catalysts based on natural zeolite deposits Taizhuzgen. The aim of the work is to determine the effect of new composite catalysts on the yield of liquid products by studying the specific surface and porous structure based on natural zeolite modified with Mо salt. It is established that the modification of natural zeolite with Mo affects the morphology of the catalyst, therefore, the obtained catalysts have different effects on the yield and composition of liquid fractions during the hydrogenation thermocatalytic transformation of hydrocarbons. The highest yield of liquid products (61.56%) was achieved using the 2% Mo/Taizhuzgen zeolite catalyst, which was chosen as optimal.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Bulletin of Kazakh National University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15328/cb1117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Plastic waste production and consumption is increasing at an alarming rate with the increase of the human population, rapid economic growth, continuous urbanization, and changes in lifestyle. In addition, the short life span of plastic accelerates the production of plastic waste on a daily basis. Plastic waste recycling is carried out in different ways, but in most developing countries, open or landfill disposal is a common practice for plastic waste management. Plastic recycling into feedstocks, also known as chemical recycling, is encouraged all over the world. One such area is the thermal and catalytic thermal degradation of plastics into hydrocarbon fractions, which can be used as high-quality motor fuel after appropriate processing. Hydrocracking in the presence of a catalyst is a promising method of converting waste plastic materials to high quality liquid transportation fuels with decreased amounts of olefins and heteroatoms such as S, N, Cl, N, and O.
The article deals with the study of hydrocracking of waste plastic into high quality liquid fuel on various catalysts based on natural zeolite deposits Taizhuzgen. The aim of the work is to determine the effect of new composite catalysts on the yield of liquid products by studying the specific surface and porous structure based on natural zeolite modified with Mо salt. It is established that the modification of natural zeolite with Mo affects the morphology of the catalyst, therefore, the obtained catalysts have different effects on the yield and composition of liquid fractions during the hydrogenation thermocatalytic transformation of hydrocarbons. The highest yield of liquid products (61.56%) was achieved using the 2% Mo/Taizhuzgen zeolite catalyst, which was chosen as optimal.