S_BRICK: a constitutive model for soils and soft rocks

IF 0.5 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL
V. Vukadin, Slovenčeva Ljubljana Slovenija Envireonment, V. Jovičić, Ljubljana Slovenia Environment Slovenčeva
{"title":"S_BRICK: a constitutive model for soils and soft rocks","authors":"V. Vukadin, Slovenčeva Ljubljana Slovenija Envireonment, V. Jovičić, Ljubljana Slovenia Environment Slovenčeva","doi":"10.18690/ACTAGEOTECHSLOV.15.2.16-37.2018","DOIUrl":null,"url":null,"abstract":"Materials known in the literature as hard soils and soft rocks are widely spread, natural materials that are commonly encountered in engineering practise. It was demonstrated that some of these materials can be described through the general theoretical framework for structured soils set by Cotecchia and Chandler [14], which takes into account the structure as an intrinsic property present in all natural geological materials. Based on laboratory results and existing theoretical frameworks, the development of a constitutive model for structured materials was carried out. The model formulated in strain space named BRICK [27, 29] was chosen as the base model and was further developed by adding features to model both the structure and the processes of destructuring. The new model was named S_BRICK and was first presented on a conceptual level, in which the typical results of modelling structured and structureless (reconstituted) materials on different stress paths were compared within the solutions of the Cotecchia and Chandler [14] theoretical framework. The S_BRICK model was validated on three materials, i.e., Pappadai clay, North-Sea clay and Corinth marl, thus covering a wide range of natural, structured materials. The results showed that S_BRICK was able to successfully model the stress-strain behaviour typical for hard-soil and soft-rock materials, in general.","PeriodicalId":50897,"journal":{"name":"Acta Geotechnica Slovenica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica Slovenica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18690/ACTAGEOTECHSLOV.15.2.16-37.2018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Materials known in the literature as hard soils and soft rocks are widely spread, natural materials that are commonly encountered in engineering practise. It was demonstrated that some of these materials can be described through the general theoretical framework for structured soils set by Cotecchia and Chandler [14], which takes into account the structure as an intrinsic property present in all natural geological materials. Based on laboratory results and existing theoretical frameworks, the development of a constitutive model for structured materials was carried out. The model formulated in strain space named BRICK [27, 29] was chosen as the base model and was further developed by adding features to model both the structure and the processes of destructuring. The new model was named S_BRICK and was first presented on a conceptual level, in which the typical results of modelling structured and structureless (reconstituted) materials on different stress paths were compared within the solutions of the Cotecchia and Chandler [14] theoretical framework. The S_BRICK model was validated on three materials, i.e., Pappadai clay, North-Sea clay and Corinth marl, thus covering a wide range of natural, structured materials. The results showed that S_BRICK was able to successfully model the stress-strain behaviour typical for hard-soil and soft-rock materials, in general.
S_BRICK:土和软岩的本构模型
文献中称为硬土和软岩的材料广泛分布,是工程实践中常见的天然材料。已经证明,其中一些材料可以通过Cotecchia和Chandler[14]建立的结构化土壤的一般理论框架来描述,该框架将结构视为所有天然地质材料中存在的固有性质。基于实验室结果和现有的理论框架,开发了结构材料的本构模型。在应变空间中建立的名为BRICK[27,29]的模型被选为基础模型,并通过添加特征对结构和破坏过程进行建模来进一步发展。新模型名为S_BRICK,首次在概念层面上提出,其中在Cotecchia和Chandler[14]理论框架的解决方案中,对不同应力路径上的结构化和无结构(重构)材料建模的典型结果进行了比较。S_BRICK模型在Pappadai粘土、北海粘土和Corinth泥灰岩三种材料上进行了验证,从而涵盖了广泛的天然结构化材料。结果表明,S_BRICK能够成功地模拟硬土和软岩材料的典型应力-应变行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geotechnica Slovenica
Acta Geotechnica Slovenica 地学-工程:地质
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ACTA GEOTECHNICA SLOVENICA aims to play an important role in publishing high-quality, theoretical papers from important and emerging areas that will have a lasting impact on fundamental and practical aspects of geomechanics and geotechnical engineering. ACTA GEOTECHNICA SLOVENICA publishes papers from the following areas: soil and rock mechanics, engineering geology, environmental geotechnics, geosynthetic, geotechnical structures, numerical and analytical methods, computer modelling, optimization of geotechnical structures, field and laboratory testing. The journal is published twice a year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信