{"title":"The Study of the Possibility of Applying Parallel Programming to the Algorithms of Space-Time Adaptive Processing","authors":"Błażej Ślesicki, A. Kawalec, Anna Slesicka","doi":"10.5604/01.3001.0016.0048","DOIUrl":null,"url":null,"abstract":"The article presents the description, assumptions and subsequent steps of the space-time adaptive processing (STAP) algorithms used as a signal processing tool in radars. The possibilities of object detection using the Sample Matrix Inversion (SMI) and Data Domain Least Squares (DDLS) algorithms were compared and showned. The article shows the impact of the use of parallel programming on the computation time of both algorithms. The main aim of this study was to propose an efficient method for the real-time implementation of the STAP algorithm in airborne radar systems. The idea of using parallel programming in STAP, supported only by the preliminary research results presented above, gives a real chance for the casual implementation of the STAP algorithm in a radar operating in close to real time mode.\n\n","PeriodicalId":52820,"journal":{"name":"Problemy Mechatroniki","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Mechatroniki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0016.0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The article presents the description, assumptions and subsequent steps of the space-time adaptive processing (STAP) algorithms used as a signal processing tool in radars. The possibilities of object detection using the Sample Matrix Inversion (SMI) and Data Domain Least Squares (DDLS) algorithms were compared and showned. The article shows the impact of the use of parallel programming on the computation time of both algorithms. The main aim of this study was to propose an efficient method for the real-time implementation of the STAP algorithm in airborne radar systems. The idea of using parallel programming in STAP, supported only by the preliminary research results presented above, gives a real chance for the casual implementation of the STAP algorithm in a radar operating in close to real time mode.