Rice disease identification method based on improved CNN-BiGRU

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Yang Lu , Xiaoxiao Wu , Pengfei Liu , Hang Li , Wanting Liu
{"title":"Rice disease identification method based on improved CNN-BiGRU","authors":"Yang Lu ,&nbsp;Xiaoxiao Wu ,&nbsp;Pengfei Liu ,&nbsp;Hang Li ,&nbsp;Wanting Liu","doi":"10.1016/j.aiia.2023.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>In the field of precision agriculture, diagnosing rice diseases from images remains challenging due to high error rates, multiple influencing factors, and unstable conditions. While machine learning and convolutional neural networks have shown promising results in identifying rice diseases, they were limited in their ability to explain the relationships among disease features. In this study, we proposed an improved rice disease classification method that combines a convolutional neural network (CNN) with a bidirectional gated recurrent unit (BiGRU). Specifically, we introduced a residual mechanism into the Inception module, expanded the module's depth, and integrated an improved Convolutional Block Attention Module (CBAM). We trained and tested the improved CNN and BiGRU, concatenated the outputs of the CNN and BiGRU modules, and passed them to the classification layer for recognition. Our experiments demonstrate that this approach achieves an accuracy of 98.21% in identifying four types of rice diseases, providing a reliable method for rice disease recognition research.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"9 ","pages":"Pages 100-109"},"PeriodicalIF":8.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721723000284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of precision agriculture, diagnosing rice diseases from images remains challenging due to high error rates, multiple influencing factors, and unstable conditions. While machine learning and convolutional neural networks have shown promising results in identifying rice diseases, they were limited in their ability to explain the relationships among disease features. In this study, we proposed an improved rice disease classification method that combines a convolutional neural network (CNN) with a bidirectional gated recurrent unit (BiGRU). Specifically, we introduced a residual mechanism into the Inception module, expanded the module's depth, and integrated an improved Convolutional Block Attention Module (CBAM). We trained and tested the improved CNN and BiGRU, concatenated the outputs of the CNN and BiGRU modules, and passed them to the classification layer for recognition. Our experiments demonstrate that this approach achieves an accuracy of 98.21% in identifying four types of rice diseases, providing a reliable method for rice disease recognition research.

基于改进CNN-BiGRU的水稻病害识别方法
在精准农业领域,由于高错误率、多种影响因素和不稳定的条件,从图像中诊断水稻病害仍然具有挑战性。虽然机器学习和卷积神经网络在识别水稻病害方面显示出了很好的结果,但它们解释病害特征之间关系的能力有限。在本研究中,我们提出了一种改进的水稻病害分类方法,该方法将卷积神经网络(CNN)与双向门控递归单元(BiGRU)相结合。具体来说,我们在Inception模块中引入了残差机制,扩展了模块的深度,并集成了一个改进的卷积块注意力模块(CBAM)。我们对改进的CNN和BiGRU进行了训练和测试,将CNN和BiGRU模块的输出连接起来,并将它们传递到分类层进行识别。实验表明,该方法在识别四种水稻病害方面的准确率达到98.21%,为水稻病害识别研究提供了可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信