F. O. Lima, L. F. Bauri, H. B. Pereira, C. Azevedo
{"title":"Effect of the cooling rate on the tensile strength of pearlitic lamellar graphite cast iron","authors":"F. O. Lima, L. F. Bauri, H. B. Pereira, C. Azevedo","doi":"10.1080/13640461.2020.1822573","DOIUrl":null,"url":null,"abstract":"ABSTRACT The effects of cooling rate and carbon equivalent on the tensile strength of pearlitic lamellar graphite cast irons were investigated. The cooling rate was varied from 6°C/s to 35°C/s for values of the carbon equivalent equal to 4.17% and 3.83%. The increase in the cooling rate promoted the refining of the eutectic cell size, primary dendrite modulus, interdendritic hydraulic diameter and pearlite interlamellar spacing. The increase in the cooling rate also refined their graphite flakes, changing the morphology from B to E type. The reduction in the carbon equivalent increased the proportion of primary dendrites from 25% to 40%. The maximum tensile strength increased from 274 to 524 MPa with the increase in the cooling rate and the reduction in the carbon equivalent. These results were used to test two tensile strength predictive models based on modified versions of the Griffith and Hall-Petch equations.","PeriodicalId":13939,"journal":{"name":"International Journal of Cast Metals Research","volume":"33 1","pages":"201 - 217"},"PeriodicalIF":1.3000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13640461.2020.1822573","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cast Metals Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/13640461.2020.1822573","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT The effects of cooling rate and carbon equivalent on the tensile strength of pearlitic lamellar graphite cast irons were investigated. The cooling rate was varied from 6°C/s to 35°C/s for values of the carbon equivalent equal to 4.17% and 3.83%. The increase in the cooling rate promoted the refining of the eutectic cell size, primary dendrite modulus, interdendritic hydraulic diameter and pearlite interlamellar spacing. The increase in the cooling rate also refined their graphite flakes, changing the morphology from B to E type. The reduction in the carbon equivalent increased the proportion of primary dendrites from 25% to 40%. The maximum tensile strength increased from 274 to 524 MPa with the increase in the cooling rate and the reduction in the carbon equivalent. These results were used to test two tensile strength predictive models based on modified versions of the Griffith and Hall-Petch equations.
期刊介绍:
The International Journal of Cast Metals Research is devoted to the dissemination of peer reviewed information on the science and engineering of cast metals, solidification and casting processes. Assured production of high integrity castings requires an integrated approach that optimises casting, mould and gating design; mould materials and binders; alloy composition and microstructure; metal melting, modification and handling; dimensional control; and finishing and post-treatment of the casting. The Journal reports advances in both the fundamental science and materials and production engineering contributing to the successful manufacture of fit for purpose castings.