{"title":"Kinematic differences between hitting off a tee versus front toss in collegiate softball players","authors":"J. Washington, G. Oliver","doi":"10.1080/23335432.2018.1472038","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this study was to compare kinematics of two hitting conditions: stationary tee and front toss from a practice pitcher. Twenty-two NCAA Division I Collegiate softball players (20.3 ± 1.5 years; 166.6 ± 6.3 cm; 68.0 ± 7.5 kg) participated. Participants executed five maximum effort swings from a stationary tee and five swings from a front toss practice pitcher. Data for each kinematic variable were averaged for the five maximal effort swings of each condition and analyzed using a within-subject repeated measures ANOVA. The front toss condition revealed significantly greater lead knee flexion at foot contact and greater trunk rotation towards the back side at ball contact. The tee condition revealed greater trunk lateral flexion to the back side at foot contact, greater trunk rotation towards the lead side at follow through, and greater pelvis rotation towards the lead side at follow through. This study most significantly indicates that swing mechanics are different between specific training methods; therefore, athletes should implement techniques most applicable to a competition setting such as the front toss.","PeriodicalId":52124,"journal":{"name":"International Biomechanics","volume":"5 1","pages":"30 - 35"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23335432.2018.1472038","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335432.2018.1472038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract The purpose of this study was to compare kinematics of two hitting conditions: stationary tee and front toss from a practice pitcher. Twenty-two NCAA Division I Collegiate softball players (20.3 ± 1.5 years; 166.6 ± 6.3 cm; 68.0 ± 7.5 kg) participated. Participants executed five maximum effort swings from a stationary tee and five swings from a front toss practice pitcher. Data for each kinematic variable were averaged for the five maximal effort swings of each condition and analyzed using a within-subject repeated measures ANOVA. The front toss condition revealed significantly greater lead knee flexion at foot contact and greater trunk rotation towards the back side at ball contact. The tee condition revealed greater trunk lateral flexion to the back side at foot contact, greater trunk rotation towards the lead side at follow through, and greater pelvis rotation towards the lead side at follow through. This study most significantly indicates that swing mechanics are different between specific training methods; therefore, athletes should implement techniques most applicable to a competition setting such as the front toss.
期刊介绍:
International Biomechanics is a fully Open Access biomechanics journal that aims to foster innovation, debate and collaboration across the full spectrum of biomechanics. We publish original articles, reviews, and short communications in all areas of biomechanics and welcome papers that explore: Bio-fluid mechanics, Continuum Biomechanics, Biotribology, Cellular Biomechanics, Mechanobiology, Mechano-transduction, Tissue Mechanics, Comparative Biomechanics and Functional Anatomy, Allometry, Animal locomotion in biomechanics, Gait analysis in biomechanics, Musculoskeletal and Orthopaedic Biomechanics, Cardiovascular Biomechanics, Plant Biomechanics, Injury Biomechanics, Impact Biomechanics, Sport and Exercise Biomechanics, Kinesiology, Rehabilitation in biomechanics, Quantitative Ergonomics, Human Factors engineering, Occupational Biomechanics, Developmental Biomechanics.