A. Haroon, Eric P. Steinberg, Richard Miller, B. Shahrooz, Waleed K. Hamid
{"title":"Investigating UHPC in deck bulb-tee girder connections, part 2: Full-scale experimental testing","authors":"A. Haroon, Eric P. Steinberg, Richard Miller, B. Shahrooz, Waleed K. Hamid","doi":"10.15554/pcij68.4-01","DOIUrl":null,"url":null,"abstract":"Deck bulb-tee girders constitute an excellent precast concrete bridge element system for medium- to longspan bridges. The precast concrete girders are transported to the jobsite, where they are placed adjacent to each other. The girders are connected using field-cast longitudinal joints. When required, a continuity diaphragm over the pier is used to create moment continuity; however, there is a risk of cracking of the field-cast joints and construction can be difficult when adjacent girders have different camber profiles. Given these challenges, adoption of the deck bulb-tee girder systems has been limited. Analytical investigation performed in part 1 of this series of papers indicated that using ultra-high-performance concrete (UHPC) can improve the performance of the field-cast joints and help overcome construction difficulties. This paper describes full-scale experimental testing performed as a follow-up to the analytical investigation. Longitudinal joints grouted with UHPC were tested under a combination of thermal and live load. A continuity diaphragm with partial UHPC was also tested under positive and negative moments over the pier.","PeriodicalId":54637,"journal":{"name":"PCI Journal","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PCI Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15554/pcij68.4-01","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Deck bulb-tee girders constitute an excellent precast concrete bridge element system for medium- to longspan bridges. The precast concrete girders are transported to the jobsite, where they are placed adjacent to each other. The girders are connected using field-cast longitudinal joints. When required, a continuity diaphragm over the pier is used to create moment continuity; however, there is a risk of cracking of the field-cast joints and construction can be difficult when adjacent girders have different camber profiles. Given these challenges, adoption of the deck bulb-tee girder systems has been limited. Analytical investigation performed in part 1 of this series of papers indicated that using ultra-high-performance concrete (UHPC) can improve the performance of the field-cast joints and help overcome construction difficulties. This paper describes full-scale experimental testing performed as a follow-up to the analytical investigation. Longitudinal joints grouted with UHPC were tested under a combination of thermal and live load. A continuity diaphragm with partial UHPC was also tested under positive and negative moments over the pier.