A Stock Trading Expert System Established by the CNN-GA-Based Collaborative System

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
J. Wu, Lingyun Sun, Gautam Srivastava, Vicente García Díaz, Jerry Chun‐wei Lin
{"title":"A Stock Trading Expert System Established by the CNN-GA-Based Collaborative System","authors":"J. Wu, Lingyun Sun, Gautam Srivastava, Vicente García Díaz, Jerry Chun‐wei Lin","doi":"10.4018/ijdwm.309957","DOIUrl":null,"url":null,"abstract":"This article uses a new convolutional neural network framework, which has good performance for time series feature extraction and stock price prediction. This method is called the stock sequence array convolutional neural network, or SSACNN for short. SSACNN collects data on leading indicators including historical prices and their futures and options, and uses arrays as the input map of the CNN framework. In the financial market, every number has its logic behind it. Leading indicators such as futures and options can reflect changes in many markets, such as the industry's prosperity. Adding the data set of leading indicators can predict the trend of stock prices well. This study takes the stock markets of the United States and Taiwan as the research objects and uses historical data, futures, and options as data sets to predict the stock prices of these two markets, and then uses genetic algorithms to find trading signals, so as to get a stock trading system. The experimental results show that the stock trading system proposed in this research can help investors obtain certain returns.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.309957","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

Abstract

This article uses a new convolutional neural network framework, which has good performance for time series feature extraction and stock price prediction. This method is called the stock sequence array convolutional neural network, or SSACNN for short. SSACNN collects data on leading indicators including historical prices and their futures and options, and uses arrays as the input map of the CNN framework. In the financial market, every number has its logic behind it. Leading indicators such as futures and options can reflect changes in many markets, such as the industry's prosperity. Adding the data set of leading indicators can predict the trend of stock prices well. This study takes the stock markets of the United States and Taiwan as the research objects and uses historical data, futures, and options as data sets to predict the stock prices of these two markets, and then uses genetic algorithms to find trading signals, so as to get a stock trading system. The experimental results show that the stock trading system proposed in this research can help investors obtain certain returns.
基于CNN-GA的协同系统构建股票交易专家系统
本文使用了一种新的卷积神经网络框架,该框架在时间序列特征提取和股价预测方面具有良好的性能。这种方法被称为股票序列阵列卷积神经网络,简称SSACNN。SSACNN收集领先指标的数据,包括历史价格及其期货和期权,并使用数组作为CNN框架的输入图。在金融市场上,每个数字背后都有其逻辑。期货和期权等领先指标可以反映许多市场的变化,例如行业的繁荣程度。加入领先指标的数据集可以很好地预测股价的走势。本研究以美国和台湾股市为研究对象,以历史数据、期货和期权为数据集,预测这两个市场的股价,然后利用遗传算法寻找交易信号,从而得到股票交易系统。实验结果表明,本文提出的股票交易系统可以帮助投资者获得一定的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信