Zhongxiong Li, Qinru Li, Duorong Zhang, F. Tan, S. Rajaure, Gang Zhao, G. N. Tripathi, Baiwei Du, Ping Yang
{"title":"Seismic Survey in Lesser Himalayan Thrust Belt, Western Nepal","authors":"Zhongxiong Li, Qinru Li, Duorong Zhang, F. Tan, S. Rajaure, Gang Zhao, G. N. Tripathi, Baiwei Du, Ping Yang","doi":"10.1155/2022/8026088","DOIUrl":null,"url":null,"abstract":"Two hundred km of 2D seismic survey was carried out at the Lesser Himalayan Thrust Belts in Dailekh district, western Nepal. The main motivation is to elucidate the geologic relationship between the known oil and gas seeps, subsurface structure, and stratigraphy in the area. This is a challenging task which is from its extreme structural and geological complexity such as thrust faulting, tight folding, steep dip layers, and strong lateral variations in seismic velocity. Seismic data were acquired with SERCEL 428XL system and processed by GEOEAST computer software. In order to increase signal-to-noise ratio (SNR), suppress interference, and search for optimum acquisition parameters, a series of comparative tests on the different charge depth and size, group interval, CDP fold, geophone array, and single high-sensitivity geophone were conducted. We also tested 2S3L (two lines shooting and three lines receiving) wide line profiling. The results indicate that single hole with charge depth of 12 m, 4-16 kg charge size (less charge size for the densely populated areas), single high-sensitivity geophone, and 1S2L wide line profiling with 132 folds are the optimum acquisition parameters. On the basis of comparative process experiment, data processing workflow consisting of data preparation, prestack denoising, amplitude compensation, deconvolution, tomography static correction, velocity analysis, residual static correction, CRS stack, poststack migration, prestack time migration (PSTM), and prestack depth migration (PSDM) was selected. Maybe affected by problem of conflicting dip in complex media, CRS stack section does not show satisfactory geological characteristics. PSTM profile has moderate signal-to-noise (S/N) ratio; the shallow, medium, and deep continuous reflections can be observed in section. More details of the geological structures can be observed in PSDM section, especially in medium and shallow layers (less than 3000 ms or 4000 m), but PSDM method is more expensive and highly time consuming than that of CRS stack and PSTM. So, the PSTM section can be reasonably used for geological interpretation. By reference to field mapping, thrust characteristics, and MT data, the final interpretation to the PSTM section identified the interfaces of 6 geological units (Paleoproterozoic Nabhisthan Fm., Paleoproterozoic Dubidanda Fm., Neogene to Late Cretaceous Surkhet group, Late Carboneferous to Early Cretaeous Gondwana group, Mesoproterozoic Upper Lakharpata group, and Lower Lakharpata group) and delineated Main Boundary Thrust (MBT), Ramgarh Thrust (RMT), Padukasthan Thrust (PT), and Dailekh Thrust (DT). The bottom of Surkhet group which is our top target zone is about 4250 meters deep.","PeriodicalId":45602,"journal":{"name":"International Journal of Geophysics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/8026088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Two hundred km of 2D seismic survey was carried out at the Lesser Himalayan Thrust Belts in Dailekh district, western Nepal. The main motivation is to elucidate the geologic relationship between the known oil and gas seeps, subsurface structure, and stratigraphy in the area. This is a challenging task which is from its extreme structural and geological complexity such as thrust faulting, tight folding, steep dip layers, and strong lateral variations in seismic velocity. Seismic data were acquired with SERCEL 428XL system and processed by GEOEAST computer software. In order to increase signal-to-noise ratio (SNR), suppress interference, and search for optimum acquisition parameters, a series of comparative tests on the different charge depth and size, group interval, CDP fold, geophone array, and single high-sensitivity geophone were conducted. We also tested 2S3L (two lines shooting and three lines receiving) wide line profiling. The results indicate that single hole with charge depth of 12 m, 4-16 kg charge size (less charge size for the densely populated areas), single high-sensitivity geophone, and 1S2L wide line profiling with 132 folds are the optimum acquisition parameters. On the basis of comparative process experiment, data processing workflow consisting of data preparation, prestack denoising, amplitude compensation, deconvolution, tomography static correction, velocity analysis, residual static correction, CRS stack, poststack migration, prestack time migration (PSTM), and prestack depth migration (PSDM) was selected. Maybe affected by problem of conflicting dip in complex media, CRS stack section does not show satisfactory geological characteristics. PSTM profile has moderate signal-to-noise (S/N) ratio; the shallow, medium, and deep continuous reflections can be observed in section. More details of the geological structures can be observed in PSDM section, especially in medium and shallow layers (less than 3000 ms or 4000 m), but PSDM method is more expensive and highly time consuming than that of CRS stack and PSTM. So, the PSTM section can be reasonably used for geological interpretation. By reference to field mapping, thrust characteristics, and MT data, the final interpretation to the PSTM section identified the interfaces of 6 geological units (Paleoproterozoic Nabhisthan Fm., Paleoproterozoic Dubidanda Fm., Neogene to Late Cretaceous Surkhet group, Late Carboneferous to Early Cretaeous Gondwana group, Mesoproterozoic Upper Lakharpata group, and Lower Lakharpata group) and delineated Main Boundary Thrust (MBT), Ramgarh Thrust (RMT), Padukasthan Thrust (PT), and Dailekh Thrust (DT). The bottom of Surkhet group which is our top target zone is about 4250 meters deep.
期刊介绍:
International Journal of Geophysics is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of theoretical, observational, applied, and computational geophysics.