Complement of the reduced non-zero component graph of free semimodules

IF 1 4区 数学
T. Tamizh Chelvam, K. Prabha Ananthi
{"title":"Complement of the reduced non-zero component graph of free semimodules","authors":"T. Tamizh Chelvam,&nbsp;K. Prabha Ananthi","doi":"10.1007/s11766-023-3737-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathbb{M}\\)</span> be a finitely generated free semimodule over a semiring <span>\\(\\mathbb{S}\\)</span> with identity having invariant basis number property with a basis <i>α</i> = {<i>α</i><sub>1</sub>,…, <i>α</i><sub><i>k</i></sub>}. The complement <span>\\(\\overline {{\\Gamma ^ * }} \\left(\\mathbb{M}\\right)\\)</span> of the reduced non-zero component graph <span>\\({\\Gamma ^ * }\\left(\\mathbb{M}\\right)\\)</span> of <span>\\(\\mathbb{M}\\)</span>, is the simple undirected graph with <span>\\(V = {\\mathbb{M}^ * }\\backslash \\left\\{ {\\sum\\limits_{i = 1}^k {{c_i}} {\\alpha _i}:{c_i} \\ne 0\\,\\,\\forall \\,\\,i} \\right\\}\\)</span> as the vertex set and such that there is an edge between two distinct vertices <span>\\(a = \\sum\\limits_{i = 1}^k {{a_i}{\\alpha _i}} \\)</span> and <span>\\(b = \\sum\\limits_{i = 1}^k {{b_i}{\\alpha _i}} \\)</span> if and only if there exists no i such that both <i>a</i><sub><i>i</i></sub>, <i>b</i><sub><i>i</i></sub> are non-zero. In this paper, we show that the graph <span>\\(\\overline {{\\Gamma ^ * }} \\left(\\mathbb{M}\\right)\\)</span> is connected and find its domination number, clique number and chromatic number. In the case of finite semirings, we determine the degree of each vertex, order, size, vertex connectivity and girth of <span>\\(\\overline {{\\Gamma ^ * }} \\left(\\mathbb{M}\\right)\\)</span>. Also, we give a necessary and sufficient condition for <span>\\(\\overline {{\\Gamma ^ * }} \\left(\\mathbb{M}\\right)\\)</span> to be Eulerian or Hamiltonian or planar.</p></div>","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":"38 1","pages":"1 - 15"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-023-3737-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathbb{M}\) be a finitely generated free semimodule over a semiring \(\mathbb{S}\) with identity having invariant basis number property with a basis α = {α1,…, αk}. The complement \(\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)\) of the reduced non-zero component graph \({\Gamma ^ * }\left(\mathbb{M}\right)\) of \(\mathbb{M}\), is the simple undirected graph with \(V = {\mathbb{M}^ * }\backslash \left\{ {\sum\limits_{i = 1}^k {{c_i}} {\alpha _i}:{c_i} \ne 0\,\,\forall \,\,i} \right\}\) as the vertex set and such that there is an edge between two distinct vertices \(a = \sum\limits_{i = 1}^k {{a_i}{\alpha _i}} \) and \(b = \sum\limits_{i = 1}^k {{b_i}{\alpha _i}} \) if and only if there exists no i such that both ai, bi are non-zero. In this paper, we show that the graph \(\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)\) is connected and find its domination number, clique number and chromatic number. In the case of finite semirings, we determine the degree of each vertex, order, size, vertex connectivity and girth of \(\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)\). Also, we give a necessary and sufficient condition for \(\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)\) to be Eulerian or Hamiltonian or planar.

自由半模的约简非零分量图的补
设\(\mathbb{M}\)为半环\(\mathbb{S}\)上的有限生成自由半模,其恒等式具有不变基数性质,且基α = α{1,…,αk}。\(\mathbb{M}\)的简化非零分量图\({\Gamma ^ * }\left(\mathbb{M}\right)\)的补\(\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)\)是以\(V = {\mathbb{M}^ * }\backslash \left\{ {\sum\limits_{i = 1}^k {{c_i}} {\alpha _i}:{c_i} \ne 0\,\,\forall \,\,i} \right\}\)为顶点集的简单无向图,当且仅当不存在i使得ai, bi都非零时,在两个不同的顶点\(a = \sum\limits_{i = 1}^k {{a_i}{\alpha _i}} \)和\(b = \sum\limits_{i = 1}^k {{b_i}{\alpha _i}} \)之间存在一条边。本文证明了图\(\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)\)是连通的,并找到了它的支配数、团数和色数。在有限半环的情况下,我们确定了每个顶点的度,顺序,大小,顶点连通性和\(\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)\)的周长。并给出了\(\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)\)为欧拉型、哈密顿型或平面型的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.00%
发文量
33
期刊介绍: Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects. The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry. Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信