Strongly quasi-local algebras and their $K$-theories

IF 0.7 2区 数学 Q2 MATHEMATICS
HengDa Bao, Xiaoman Chen, Jiawen Zhang
{"title":"Strongly quasi-local algebras and their $K$-theories","authors":"HengDa Bao, Xiaoman Chen, Jiawen Zhang","doi":"10.4171/jncg/499","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a notion of strongly quasi-local algebras. They are defined for each discrete metric space with bounded geometry, and sit between the Roe algebra and the quasi-local algebra. We show that strongly quasi-local algebras are coarse invariants, hence encoding coarse geometric information of the underlying spaces. We prove that for a discrete metric space with bounded geometry which admits a coarse embedding into a Hilbert space, the inclusion of the Roe algebra into the strongly quasi-local algebra induces an isomorphism in $K$-theory.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/499","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we introduce a notion of strongly quasi-local algebras. They are defined for each discrete metric space with bounded geometry, and sit between the Roe algebra and the quasi-local algebra. We show that strongly quasi-local algebras are coarse invariants, hence encoding coarse geometric information of the underlying spaces. We prove that for a discrete metric space with bounded geometry which admits a coarse embedding into a Hilbert space, the inclusion of the Roe algebra into the strongly quasi-local algebra induces an isomorphism in $K$-theory.
强拟局部代数及其$K$-理论
本文引入了强拟局部代数的概念。它们被定义为每一个具有有界几何的离散度量空间,并且位于Roe代数和准局部代数之间。我们证明了强拟局部代数是粗糙不变量,因此编码了底层空间的粗糙几何信息。我们证明了对于一个允许粗嵌入到Hilbert空间的具有有界几何的离散度量空间,将Roe代数包含到强拟局部代数中可以在K -理论中导出一个同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信