Matrix Spherical Functions for $(\mathrm{SU}(n+m),\mathrm{S}(\mathrm{U}(n)\times \mathrm{U}(m)))$: Two Specific Classes

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Jie Liu
{"title":"Matrix Spherical Functions for $(\\mathrm{SU}(n+m),\\mathrm{S}(\\mathrm{U}(n)\\times \\mathrm{U}(m)))$: Two Specific Classes","authors":"Jie Liu","doi":"10.3842/SIGMA.2023.055","DOIUrl":null,"url":null,"abstract":"We consider the matrix spherical function related to the compact symmetric pair $(G,K)=(\\mathrm{SU}(n+m),\\mathrm{S}(\\mathrm{U}(n)\\times\\mathrm{U}(m)))$. The irreducible $K$ representations $(\\pi,V)$ in the ${\\rm U}(n)$ part are considered and the induced representation $\\mathrm{Ind}_K^G\\pi$ splits multiplicity free. In this case, the irreducible $K$ representations in the ${\\rm U}(n)$ part are studied. The corresponding spherical functions can be approximated in terms of the simpler matrix-valued functions. We can determine the explicit spherical functions using the action of a differential operator. We consider several cases of irreducible $K$ representations and the orthogonality relations are also described.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.055","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the matrix spherical function related to the compact symmetric pair $(G,K)=(\mathrm{SU}(n+m),\mathrm{S}(\mathrm{U}(n)\times\mathrm{U}(m)))$. The irreducible $K$ representations $(\pi,V)$ in the ${\rm U}(n)$ part are considered and the induced representation $\mathrm{Ind}_K^G\pi$ splits multiplicity free. In this case, the irreducible $K$ representations in the ${\rm U}(n)$ part are studied. The corresponding spherical functions can be approximated in terms of the simpler matrix-valued functions. We can determine the explicit spherical functions using the action of a differential operator. We consider several cases of irreducible $K$ representations and the orthogonality relations are also described.
$(\mathrm{SU}(n+m),\mathrm{S}(\mathrm{U}(n)\乘以\mathrm{U}(m)) $的矩阵球面函数:两个特定的类
考虑紧致对称对$(G,K)=(\mathrm{SU}(n+m),\mathrm{S}(\mathrm{U}(n)\乘以\mathrm{U}(m)) $。考虑了${\rm U}(n)$部分的不可约$K$表示$(\pi,V)$,导出的表示$\ mathm {Ind}_K^G\pi$拆分了多重性。在这种情况下,研究了${\rm U}(n)$部分中的不可约$K$表示。相应的球函数可以用更简单的矩阵值函数来近似。我们可以利用微分算子的作用确定显式球面函数。我们考虑了不可约$K$表示的几种情况,并描述了正交关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信