{"title":"Computing the Rabinowitz Floer homology of tentacular hyperboloids","authors":"Alexander Fauck, W. Merry, J. Wi'sniewska","doi":"10.3934/jmd.2021013","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We compute the Rabinowitz Floer homology for a class of non-compact hyperboloids <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Sigma\\simeq S^{n+k-1}\\times\\mathbb{R}^{n-k} $\\end{document}</tex-math></inline-formula>. Using an embedding of a compact sphere <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\Sigma_0\\simeq S^{2k-1} $\\end{document}</tex-math></inline-formula> into the hypersurface <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\Sigma $\\end{document}</tex-math></inline-formula>, we construct a chain map from the Floer complex of <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\Sigma $\\end{document}</tex-math></inline-formula> to the Floer complex of <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\Sigma_0 $\\end{document}</tex-math></inline-formula>. In contrast to the compact case, the Rabinowitz Floer homology groups of <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\Sigma $\\end{document}</tex-math></inline-formula> are both non-zero and not equal to its singular homology. As a consequence, we deduce that the Weinstein Conjecture holds for any strongly tentacular deformation of such a hyperboloid.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2021013","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We compute the Rabinowitz Floer homology for a class of non-compact hyperboloids \begin{document}$ \Sigma\simeq S^{n+k-1}\times\mathbb{R}^{n-k} $\end{document}. Using an embedding of a compact sphere \begin{document}$ \Sigma_0\simeq S^{2k-1} $\end{document} into the hypersurface \begin{document}$ \Sigma $\end{document}, we construct a chain map from the Floer complex of \begin{document}$ \Sigma $\end{document} to the Floer complex of \begin{document}$ \Sigma_0 $\end{document}. In contrast to the compact case, the Rabinowitz Floer homology groups of \begin{document}$ \Sigma $\end{document} are both non-zero and not equal to its singular homology. As a consequence, we deduce that the Weinstein Conjecture holds for any strongly tentacular deformation of such a hyperboloid.
We compute the Rabinowitz Floer homology for a class of non-compact hyperboloids \begin{document}$ \Sigma\simeq S^{n+k-1}\times\mathbb{R}^{n-k} $\end{document}. Using an embedding of a compact sphere \begin{document}$ \Sigma_0\simeq S^{2k-1} $\end{document} into the hypersurface \begin{document}$ \Sigma $\end{document}, we construct a chain map from the Floer complex of \begin{document}$ \Sigma $\end{document} to the Floer complex of \begin{document}$ \Sigma_0 $\end{document}. In contrast to the compact case, the Rabinowitz Floer homology groups of \begin{document}$ \Sigma $\end{document} are both non-zero and not equal to its singular homology. As a consequence, we deduce that the Weinstein Conjecture holds for any strongly tentacular deformation of such a hyperboloid.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.