{"title":"River water level measurement system using Sobel edge detection method","authors":"Faiz Miftakhur Rozaqi, W. Wahyono","doi":"10.14710/jtsiskom.2021.14119","DOIUrl":null,"url":null,"abstract":"Flood is a natural disaster that often occurs in Indonesia. Therefore, a flood warning system is required to reduce the number of losses due to flooding. In this study, a Sobel edge detection-based framework is proposed to measure the river water level, which is expected to be used as an early flood warning system. Sobel edge detection is used to determine the edge of the water surface, which is then taken by the position of the pixels, and the height is calculated by comparing the image with actual conditions. The test results of the system implemented on the prototype show that this system has an RMSE less than 0.6986 mm and can run at 12 fps which in the future can be implemented directly on rivers.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.2021.14119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flood is a natural disaster that often occurs in Indonesia. Therefore, a flood warning system is required to reduce the number of losses due to flooding. In this study, a Sobel edge detection-based framework is proposed to measure the river water level, which is expected to be used as an early flood warning system. Sobel edge detection is used to determine the edge of the water surface, which is then taken by the position of the pixels, and the height is calculated by comparing the image with actual conditions. The test results of the system implemented on the prototype show that this system has an RMSE less than 0.6986 mm and can run at 12 fps which in the future can be implemented directly on rivers.