{"title":"Relations between ageing and dependence for exchangeable lifetimes with an extension for the IFRA/DFRA property","authors":"G. Nappo, F. Spizzichino","doi":"10.1515/demo-2020-0001","DOIUrl":null,"url":null,"abstract":"Abstract We first review an approach that had been developed in the past years to introduce concepts of “bivariate ageing” for exchangeable lifetimes and to analyze mutual relations among stochastic dependence, univariate ageing, and bivariate ageing. A specific feature of such an approach dwells on the concept of semi-copula and in the extension, from copulas to semi-copulas, of properties of stochastic dependence. In this perspective, we aim to discuss some intricate aspects of conceptual character and to provide the readers with pertinent remarks from a Bayesian Statistics standpoint. In particular we will discuss the role of extensions of dependence properties. “Archimedean” models have an important role in the present framework. In the second part of the paper, the definitions of Kendall distribution and of Kendall equivalence classes will be extended to semi-copulas and related properties will be analyzed. On such a basis, we will consider the notion of “Pseudo-Archimedean” models and extend to them the analysis of the relations between the ageing notions of IFRA/DFRA-type and the dependence concepts of PKD/NKD.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"8 1","pages":"1 - 33"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2020-0001","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2020-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We first review an approach that had been developed in the past years to introduce concepts of “bivariate ageing” for exchangeable lifetimes and to analyze mutual relations among stochastic dependence, univariate ageing, and bivariate ageing. A specific feature of such an approach dwells on the concept of semi-copula and in the extension, from copulas to semi-copulas, of properties of stochastic dependence. In this perspective, we aim to discuss some intricate aspects of conceptual character and to provide the readers with pertinent remarks from a Bayesian Statistics standpoint. In particular we will discuss the role of extensions of dependence properties. “Archimedean” models have an important role in the present framework. In the second part of the paper, the definitions of Kendall distribution and of Kendall equivalence classes will be extended to semi-copulas and related properties will be analyzed. On such a basis, we will consider the notion of “Pseudo-Archimedean” models and extend to them the analysis of the relations between the ageing notions of IFRA/DFRA-type and the dependence concepts of PKD/NKD.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations