A Note on Yamabe Solitons on 3-dimensional Almost Kenmotsu Manifolds with $\textbf{Q}\phi=\phi \textbf{Q}$

IF 0.4 Q4 MATHEMATICS
G. Ghosh
{"title":"A Note on Yamabe Solitons on 3-dimensional Almost Kenmotsu Manifolds with $\\textbf{Q}\\phi=\\phi \\textbf{Q}$","authors":"G. Ghosh","doi":"10.36890/iejg.1239222","DOIUrl":null,"url":null,"abstract":"In the present paper, we prove that if the metric of a three dimensional almost Kenmotsu manifold with $\\textbf{Q}\\phi=\\phi \\textbf{Q}$ whose scalar curvature remains invariant under the chracterstic vector field $\\zeta$, admits a non-trivial Yamabe solitons, then the manifold is of constant sectional curvature or the manifold is Ricci simple.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1239222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we prove that if the metric of a three dimensional almost Kenmotsu manifold with $\textbf{Q}\phi=\phi \textbf{Q}$ whose scalar curvature remains invariant under the chracterstic vector field $\zeta$, admits a non-trivial Yamabe solitons, then the manifold is of constant sectional curvature or the manifold is Ricci simple.
关于$\textbf{Q}\phi=\textbf{Q}的三维几乎Kenmotsu流形上Yamabe孤立子的一个注记$
本文证明了一个具有$\textbf{Q}\phi=\phi\textbf{Q}$的三维几乎Kenmotsu流形,其标量曲率在chracterstic向量场$\zeta$下保持不变,如果它的度量允许一个非平凡的Yamabe孤立子,则该流形具有恒定的截面曲率或该流形是Ricci简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信