Yichen Wu, Zhihua Zhang, M. Crabbe, Lipon Chandra Das
{"title":"Statistical Learning-Based Spatial Downscaling Models for Precipitation Distribution","authors":"Yichen Wu, Zhihua Zhang, M. Crabbe, Lipon Chandra Das","doi":"10.1155/2022/3140872","DOIUrl":null,"url":null,"abstract":"The downscaling technique produces high spatial resolution precipitation distribution in order to analyze impacts of climate change in data-scarce regions or local scales. In this study, based on three statistical learning algorithms, such as support vector machine (SVM), random forest regression (RF), and gradient boosting regressor (GBR), we proposed an efficient downscaling approach to produce high spatial resolution precipitation. In order to demonstrate efficiency and accuracy of our models over traditional multilinear regression (MLR) downscaling models, we did a downscaling analysis for daily observed precipitation data from 34 monitoring sites in Bangladesh. Validation revealed that \n \n \n \n R\n \n \n 2\n \n \n \n of GBR could reach 0.98, compared with RF (0.94), SVM (0.88), and multilinear regression (MLR) (0.69) models, so the GBR-based downscaling model had the best performance among all four downscaling models. We suggest that the GBR-based downscaling models should be used to replace traditional MLR downscaling models to produce a more accurate map of high-resolution precipitation for flood disaster management, drought forecasting, and long-term planning of land and water resources.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/3140872","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
The downscaling technique produces high spatial resolution precipitation distribution in order to analyze impacts of climate change in data-scarce regions or local scales. In this study, based on three statistical learning algorithms, such as support vector machine (SVM), random forest regression (RF), and gradient boosting regressor (GBR), we proposed an efficient downscaling approach to produce high spatial resolution precipitation. In order to demonstrate efficiency and accuracy of our models over traditional multilinear regression (MLR) downscaling models, we did a downscaling analysis for daily observed precipitation data from 34 monitoring sites in Bangladesh. Validation revealed that
R
2
of GBR could reach 0.98, compared with RF (0.94), SVM (0.88), and multilinear regression (MLR) (0.69) models, so the GBR-based downscaling model had the best performance among all four downscaling models. We suggest that the GBR-based downscaling models should be used to replace traditional MLR downscaling models to produce a more accurate map of high-resolution precipitation for flood disaster management, drought forecasting, and long-term planning of land and water resources.
期刊介绍:
Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.