{"title":"Combining multitask and transfer learning with deep Gaussian processes for autotuning-based performance engineering","authors":"P. Luszczek, Wissam M. Sid-Lakhdar, J. Dongarra","doi":"10.1177/10943420231166365","DOIUrl":null,"url":null,"abstract":"We combine deep Gaussian processes (DGPs) with multitask and transfer learning for the performance modeling and optimization of HPC applications. Deep Gaussian processes merge the uncertainty quantification advantage of Gaussian processes (GPs) with the predictive power of deep learning. Multitask and transfer learning allow for improved learning efficiency when several similar tasks are to be learned simultaneously and when previous learned models are sought to help in the learning of new tasks, respectively. A comparison with state-of-the-art autotuners shows the advantage of our approach on two application problems. In this article, we combine DGPs with multitask and transfer learning to allow for both an improved tuning of an application parameters on problems of interest but also the prediction of parameters on any potential problem the application might encounter.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"37 1","pages":"229 - 244"},"PeriodicalIF":3.5000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420231166365","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
We combine deep Gaussian processes (DGPs) with multitask and transfer learning for the performance modeling and optimization of HPC applications. Deep Gaussian processes merge the uncertainty quantification advantage of Gaussian processes (GPs) with the predictive power of deep learning. Multitask and transfer learning allow for improved learning efficiency when several similar tasks are to be learned simultaneously and when previous learned models are sought to help in the learning of new tasks, respectively. A comparison with state-of-the-art autotuners shows the advantage of our approach on two application problems. In this article, we combine DGPs with multitask and transfer learning to allow for both an improved tuning of an application parameters on problems of interest but also the prediction of parameters on any potential problem the application might encounter.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.