Surface plasmon resonance sensor for refractive index and temperature measurement based upon a double-sided polished microstructured fiber

IF 1.3 4区 工程技术 Q4 CHEMISTRY, ANALYTICAL
Xin Yan, Yang Zhao, T. Cheng, R. Fu
{"title":"Surface plasmon resonance sensor for refractive index and temperature measurement based upon a double-sided polished microstructured fiber","authors":"Xin Yan, Yang Zhao, T. Cheng, R. Fu","doi":"10.1080/10739149.2022.2127759","DOIUrl":null,"url":null,"abstract":"Abstract This paper reports a double-sided polished microstructured fiber based on the refractive index that simultaneously measures the refractive index and temperature. Two polished planes were introduced into the cladding. A gold film and polydimethylsiloxane are deposited on one side of the plane for temperature measurements, and graphene layers are coated on the surface of the silver film on the other side for refractive index measurements. The finite element method is used to characterize the sensing characteristics of the sensor. The results show that when the liquid refractive index is from 1.36 to 1.4 and the temperature from 70 °C to 110 °C, the maximum sensitivity of the sensor is 15,000 nm/RIU and 8.8 nm/°C, respectively. The double-sided polished structure facilitates the development of multi-parameter measurement sensors for various applications.","PeriodicalId":13547,"journal":{"name":"Instrumentation Science & Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instrumentation Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10739149.2022.2127759","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This paper reports a double-sided polished microstructured fiber based on the refractive index that simultaneously measures the refractive index and temperature. Two polished planes were introduced into the cladding. A gold film and polydimethylsiloxane are deposited on one side of the plane for temperature measurements, and graphene layers are coated on the surface of the silver film on the other side for refractive index measurements. The finite element method is used to characterize the sensing characteristics of the sensor. The results show that when the liquid refractive index is from 1.36 to 1.4 and the temperature from 70 °C to 110 °C, the maximum sensitivity of the sensor is 15,000 nm/RIU and 8.8 nm/°C, respectively. The double-sided polished structure facilitates the development of multi-parameter measurement sensors for various applications.
基于双面抛光微结构光纤的用于折射率和温度测量的表面等离子体共振传感器
本文报道了一种基于折射率的双面抛光微结构光纤,该光纤可以同时测量折射率和温度。两个抛光平面被引入到包层中。在平面的一侧沉积一层金膜和聚二甲基硅氧烷,用于温度测量,在另一侧的银膜表面涂上石墨烯层,用于折射率测量。采用有限元法对传感器的传感特性进行了表征。结果表明,当液体折射率为1.36 ~ 1.4,温度为70 ~ 110℃时,传感器的最大灵敏度分别为15,000 nm/RIU和8.8 nm/°C。双面抛光结构便于开发各种应用的多参数测量传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Instrumentation Science & Technology
Instrumentation Science & Technology 工程技术-分析化学
CiteScore
3.50
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Instrumentation Science & Technology is an internationally acclaimed forum for fast publication of critical, peer reviewed manuscripts dealing with innovative instrument design and applications in chemistry, physics biotechnology and environmental science. Particular attention is given to state-of-the-art developments and their rapid communication to the scientific community. Emphasis is on modern instrumental concepts, though not exclusively, including detectors, sensors, data acquisition and processing, instrument control, chromatography, electrochemistry, spectroscopy of all types, electrophoresis, radiometry, relaxation methods, thermal analysis, physical property measurements, surface physics, membrane technology, microcomputer design, chip-based processes, and more. Readership includes everyone who uses instrumental techniques to conduct their research and development. They are chemists (organic, inorganic, physical, analytical, nuclear, quality control) biochemists, biotechnologists, engineers, and physicists in all of the instrumental disciplines mentioned above, in both the laboratory and chemical production environments. The journal is an important resource of instrument design and applications data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信