{"title":"Retrieval of Scholarly Articles with Similar Core Contents","authors":"Rey-Long Liu","doi":"10.5865/IJKCT.2017.7.3.005","DOIUrl":null,"url":null,"abstract":"Article history: Received 13 April 2017 Revised 29 July 2017 Accepted 01 August 2017 Retrieval of scholarly articles about a specific research issue is a routine job of researchers to cross-validate the evidence about the issue. Two articles that focus on a research issue should share similar terms in their core contents, including their goals, backgrounds, and conclusions. In this paper, we present a technique CCSE (Core Content Similarity Estimation) that, given an article a, recommends those articles that share similar core content terms with a. CCSE works on titles and abstracts of articles, which are publicly available. It estimates and integrates three kinds of similarity: goal similarity, background similarity, and conclusion similarity. Empirical evaluation shows that CCSE performs significantly better than several state-of-the-art techniques in recommending those biomedical articles that are judged (by domain experts) to be the ones whose core contents focus on the same research issues. CCSE works for those articles that present research background followed by main results and discussion, and hence it may be used to support the identification of the closely related evidence already published in these articles, even when only titles and abstracts of the articles are available.","PeriodicalId":53292,"journal":{"name":"International Journal of Knowledge Content Development and Technology","volume":"7 1","pages":"5-27"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Knowledge Content Development and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5865/IJKCT.2017.7.3.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Article history: Received 13 April 2017 Revised 29 July 2017 Accepted 01 August 2017 Retrieval of scholarly articles about a specific research issue is a routine job of researchers to cross-validate the evidence about the issue. Two articles that focus on a research issue should share similar terms in their core contents, including their goals, backgrounds, and conclusions. In this paper, we present a technique CCSE (Core Content Similarity Estimation) that, given an article a, recommends those articles that share similar core content terms with a. CCSE works on titles and abstracts of articles, which are publicly available. It estimates and integrates three kinds of similarity: goal similarity, background similarity, and conclusion similarity. Empirical evaluation shows that CCSE performs significantly better than several state-of-the-art techniques in recommending those biomedical articles that are judged (by domain experts) to be the ones whose core contents focus on the same research issues. CCSE works for those articles that present research background followed by main results and discussion, and hence it may be used to support the identification of the closely related evidence already published in these articles, even when only titles and abstracts of the articles are available.