Autocompensating measurement-device-independent quantum cryptography in space division multiplexing optical fibers

IF 1.9 4区 物理与天体物理 Q3 OPTICS
J. Liñares, G. M. Carral, X. Prieto-Blanco, D. Balado
{"title":"Autocompensating measurement-device-independent quantum cryptography in space division multiplexing optical fibers","authors":"J. Liñares,&nbsp;G. M. Carral,&nbsp;X. Prieto-Blanco,&nbsp;D. Balado","doi":"10.1186/s41476-021-00166-7","DOIUrl":null,"url":null,"abstract":"<div><p>Single photon or biphoton states propagating in optical fibers or in free space are affected by random perturbations and imperfections that disturb the information encoded in such states and accordingly quantum key distribution is prevented. We propose three different systems for autocompensating such random perturbations and imperfections when a measurement-device-independent protocol is used. These systems correspond to different optical fibers intended for space division multiplexing and supporting collinear modes, polarization modes or codirectional modes such as few-mode optical fibers and multicore optical fibers. Accordingly, we propose different Bell-states measurement devices located at Charlie system and present simulations that confirm the importance of autocompensation. Moreover, these types of optical fibers allow the use of several transmission channels, which compensates the reduction of the bit rate due to losses.</p></div>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"17 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jeos.springeropen.com/counter/pdf/10.1186/s41476-021-00166-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-021-00166-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Single photon or biphoton states propagating in optical fibers or in free space are affected by random perturbations and imperfections that disturb the information encoded in such states and accordingly quantum key distribution is prevented. We propose three different systems for autocompensating such random perturbations and imperfections when a measurement-device-independent protocol is used. These systems correspond to different optical fibers intended for space division multiplexing and supporting collinear modes, polarization modes or codirectional modes such as few-mode optical fibers and multicore optical fibers. Accordingly, we propose different Bell-states measurement devices located at Charlie system and present simulations that confirm the importance of autocompensation. Moreover, these types of optical fibers allow the use of several transmission channels, which compensates the reduction of the bit rate due to losses.

空分复用光纤中与测量设备无关的自补偿量子密码
在光纤或自由空间中传播的单光子或双光子状态会受到随机扰动和缺陷的影响,这些扰动和缺陷会干扰这些状态中编码的信息,从而阻碍量子密钥的分发。我们提出了三种不同的系统,用于在使用独立于测量设备的协议时自动补偿这种随机扰动和缺陷。这些系统分别对应于用于空分复用并支持共线模式、偏振模式或双向模式的不同光纤,如少模光纤和多芯光纤。因此,我们提出了位于查理系统的不同贝尔态测量装置,并进行了模拟,证实了自动补偿的重要性。此外,这些类型的光纤允许使用多个传输通道,从而补偿了因损耗而降低的比特率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信