LIPSCHITZ GROUPS AND LIPSCHITZ MAPS

IF 0.7 Q2 MATHEMATICS
L. Poinsot
{"title":"LIPSCHITZ GROUPS AND LIPSCHITZ MAPS","authors":"L. Poinsot","doi":"10.22108/IJGT.2017.10506","DOIUrl":null,"url":null,"abstract":"This contribution mainly focuses on some aspects of Lipschitz groups, i.e., metrizable groups with Lipschitz multiplication and inversion map. In the main result it is proved that metric groups, with a translation-invariant metric, may be characterized as particular group objects in the category of metric spaces and Lipschitz maps. Moreover, up to an adjustment of the metric, any metrizable abelian group also is shown to be a Lipschitz group. Finally we present a result similar to the fact that any topological nilpotent element x in a Banach algebra gives rise to an invertible element 1 x, in the setting of complete Lipschitz groups.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2017.10506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This contribution mainly focuses on some aspects of Lipschitz groups, i.e., metrizable groups with Lipschitz multiplication and inversion map. In the main result it is proved that metric groups, with a translation-invariant metric, may be characterized as particular group objects in the category of metric spaces and Lipschitz maps. Moreover, up to an adjustment of the metric, any metrizable abelian group also is shown to be a Lipschitz group. Finally we present a result similar to the fact that any topological nilpotent element x in a Banach algebra gives rise to an invertible element 1 x, in the setting of complete Lipschitz groups.
李普希茨群和李普希茨图
本文主要研究了Lipschitz群的一些方面,即具有Lipschitz乘法和反演映射的可度量群。在主要结果中,证明了具有平移不变度量的度量群可以被表征为度量空间和Lipschitz映射范畴中的特殊群对象。此外,在对度规进行调整之前,任何可度量的阿贝尔群也被证明是一个Lipschitz群。最后,在完全Lipschitz群的情况下,我们给出了一个类似于Banach代数中任何拓扑幂零元x产生可逆元1x的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信