One-dimensional Z-scheme TiO2/WO3 composite nanofibres for enhanced photocatalytic activity of hydrogen production

Q3 Engineering
Junhua Hu, D. Wan, Peng Zhang, Jiangtao Zhao, G. Shao
{"title":"One-dimensional Z-scheme TiO2/WO3 composite nanofibres for enhanced photocatalytic activity of hydrogen production","authors":"Junhua Hu, D. Wan, Peng Zhang, Jiangtao Zhao, G. Shao","doi":"10.1504/IJNM.2019.10018339","DOIUrl":null,"url":null,"abstract":"TiO2/WO3 composite nanofibres were fabricated by electrospinning and calcine. The as-prepared composite nanofibes were characterised by scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy, respectively. The results indicated that the TiO2/WO3 composite nanofibres were successfully fabricated, and the H2-generation of the as-fabricated TiO2/WO3 composite nanofibres was significantly enhanced comparing with pure TiO2 nanofibres. The enhanced photocatalytic activities were mainly due to the addition of WO3, which acted as a 'hole collector' leading to effective charge transfer. More importantly, the improvement of photocatalytic activity of TiO2/WO3 composite nanofibres was proved by photocurrent and electrochemical impedance spectroscopy.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2019.10018339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

TiO2/WO3 composite nanofibres were fabricated by electrospinning and calcine. The as-prepared composite nanofibes were characterised by scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy, respectively. The results indicated that the TiO2/WO3 composite nanofibres were successfully fabricated, and the H2-generation of the as-fabricated TiO2/WO3 composite nanofibres was significantly enhanced comparing with pure TiO2 nanofibres. The enhanced photocatalytic activities were mainly due to the addition of WO3, which acted as a 'hole collector' leading to effective charge transfer. More importantly, the improvement of photocatalytic activity of TiO2/WO3 composite nanofibres was proved by photocurrent and electrochemical impedance spectroscopy.
一维Z-scheme TiO2/WO3复合纳米纤维用于提高光催化制氢活性
采用静电纺丝和煅烧法制备了TiO2/WO3复合纳米纤维。采用扫描电镜、能谱、透射电镜、x射线衍射、x射线光电子能谱和紫外-可见漫反射光谱对制备的复合纳米纤维进行了表征。结果表明:TiO2/WO3复合纳米纤维制备成功,制备后的TiO2/WO3复合纳米纤维的h2代比纯TiO2纳米纤维明显增强。光催化活性的增强主要是由于WO3的加入,它作为“空穴收集器”导致有效的电荷转移。更重要的是,光电流和电化学阻抗谱证实了TiO2/WO3复合纳米纤维光催化活性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanomanufacturing
International Journal of Nanomanufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信