{"title":"Blow-up criteria and instability of standing waves for the fractional Schrodinger Poisson equation","authors":"Yi-Na Mo, Min Zhu, Binhua Feng","doi":"10.58997/ejde.2023.24","DOIUrl":null,"url":null,"abstract":"In this article, we consider blow-up criteria and instability of standing waves for the fractional Schrodinger-Poisson equation. By using the localized virial estimates, we establish the blow-up criteria for non-radial solutions in both mass-critical and mass-supercritical cases. Based on these blow-up criteria and three variational characterizations of the ground state, we prove that the standing waves are strongly unstable. These obtained results extend the corresponding ones presented in the literature.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we consider blow-up criteria and instability of standing waves for the fractional Schrodinger-Poisson equation. By using the localized virial estimates, we establish the blow-up criteria for non-radial solutions in both mass-critical and mass-supercritical cases. Based on these blow-up criteria and three variational characterizations of the ground state, we prove that the standing waves are strongly unstable. These obtained results extend the corresponding ones presented in the literature.
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.