{"title":"Solve High-Dimensional Reflected Partial Differential Equations by Neural Network Method","authors":"Xiaowen Shi, Xiangyu Zhang, Renwu Tang, Juan Yang","doi":"10.3390/mca28040079","DOIUrl":null,"url":null,"abstract":"Reflected partial differential equations (PDEs) have important applications in financial mathematics, stochastic control, physics, and engineering. This paper aims to present a numerical method for solving high-dimensional reflected PDEs. In fact, overcoming the “dimensional curse” and approximating the reflection term are challenges. Some numerical algorithms based on neural networks developed recently fail in solving high-dimensional reflected PDEs. To solve these problems, firstly, the reflected PDEs are transformed into reflected backward stochastic differential equations (BSDEs) using the reflected Feyman–Kac formula. Secondly, the reflection term of the reflected BSDEs is approximated using the penalization method. Next, the BSDEs are discretized using a strategy that combines Euler and Crank–Nicolson schemes. Finally, a deep neural network model is employed to simulate the solution of the BSDEs. The effectiveness of the proposed method is tested by two numerical experiments, and the model shows high stability and accuracy in solving reflected PDEs of up to 100 dimensions.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28040079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Reflected partial differential equations (PDEs) have important applications in financial mathematics, stochastic control, physics, and engineering. This paper aims to present a numerical method for solving high-dimensional reflected PDEs. In fact, overcoming the “dimensional curse” and approximating the reflection term are challenges. Some numerical algorithms based on neural networks developed recently fail in solving high-dimensional reflected PDEs. To solve these problems, firstly, the reflected PDEs are transformed into reflected backward stochastic differential equations (BSDEs) using the reflected Feyman–Kac formula. Secondly, the reflection term of the reflected BSDEs is approximated using the penalization method. Next, the BSDEs are discretized using a strategy that combines Euler and Crank–Nicolson schemes. Finally, a deep neural network model is employed to simulate the solution of the BSDEs. The effectiveness of the proposed method is tested by two numerical experiments, and the model shows high stability and accuracy in solving reflected PDEs of up to 100 dimensions.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.