Einstein warped product spaces on Lie groups

IF 0.5 Q3 MATHEMATICS
Cubo Pub Date : 2022-12-21 DOI:10.56754/0719-0646.2403.0485
B. Pal, Santosh Kumar, Pankaj Kumar
{"title":"Einstein warped product spaces on Lie groups","authors":"B. Pal, Santosh Kumar, Pankaj Kumar","doi":"10.56754/0719-0646.2403.0485","DOIUrl":null,"url":null,"abstract":"We consider a compact Lie group with bi-invariant metric, coming from the Killing form. In this paper, we study Einstein warped product space, $M = M_1 \\times_{f_1} M_2$ for the cases, $(i)$ $M_1$ is a Lie group $(ii)$ $M_2$ is a Lie group and $(iii)$ both $M_1$ and $M_2$ are Lie groups. Moreover, we obtain the conditions for an Einstein warped product of Lie groups to become a simple product manifold. Then, we characterize the warping function for generalized Robertson-Walker spacetime, $(M = I \\times_{f_1} G_2, - dt^2 + f_1^2 g_2)$ whose fiber $G_2$, being semi-simple compact Lie group of $\\dim G_2>2$, having bi-invariant metric, coming from the Killing form.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2403.0485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a compact Lie group with bi-invariant metric, coming from the Killing form. In this paper, we study Einstein warped product space, $M = M_1 \times_{f_1} M_2$ for the cases, $(i)$ $M_1$ is a Lie group $(ii)$ $M_2$ is a Lie group and $(iii)$ both $M_1$ and $M_2$ are Lie groups. Moreover, we obtain the conditions for an Einstein warped product of Lie groups to become a simple product manifold. Then, we characterize the warping function for generalized Robertson-Walker spacetime, $(M = I \times_{f_1} G_2, - dt^2 + f_1^2 g_2)$ whose fiber $G_2$, being semi-simple compact Lie group of $\dim G_2>2$, having bi-invariant metric, coming from the Killing form.
李群上的爱因斯坦翘曲积空间
我们考虑一个双不变度量的紧李群,它来自于Killing形式。本文研究了爱因斯坦翘曲积空间中$M = M_1 \乘以_{f_1} M_2$的情形,其中$(i)$ $M_1$是李群$(ii)$ $M_2$是李群$(iii)$ M_1$和$M_2$都是李群。此外,我们还得到了李群的爱因斯坦弯曲积成为简单积流形的条件。然后,我们刻画了广义Robertson-Walker时空$(M = I \times_{f_1} G_2, - dt^2 + f_1^2 G_2)$的翘曲函数,它的纤维$G_2$是$\dim G_2 bbb_2 $的半简单紧李群,具有双不变度量,来自于Killing形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信