Comparison rate of convergence and data dependence for a new iteration method

IF 0.7 Q2 MATHEMATICS
Samet Maldar, Yunus Atalan, Kadri Doğan
{"title":"Comparison rate of convergence and data dependence for a new iteration method","authors":"Samet Maldar, Yunus Atalan, Kadri Doğan","doi":"10.32513/tbilisi/1608606050","DOIUrl":null,"url":null,"abstract":"In this paper, we have defined hyperbolic type of some iteration methods. The new iteration has been investigated convergence for mappings satisfying certain condition in hyperbolic spaces. It has been proved that this iteration is equivalent in terms of convergence with another iteration method in the same spaces. The rate of convergence of these two iteration methods have been compared. We have investigated data dependence result using hyperbolic type iteration. Finally, we have given numerical examples about rate of convergence and data dependence.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":"13 1","pages":"65-79"},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tbilisi/1608606050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we have defined hyperbolic type of some iteration methods. The new iteration has been investigated convergence for mappings satisfying certain condition in hyperbolic spaces. It has been proved that this iteration is equivalent in terms of convergence with another iteration method in the same spaces. The rate of convergence of these two iteration methods have been compared. We have investigated data dependence result using hyperbolic type iteration. Finally, we have given numerical examples about rate of convergence and data dependence.
一种新迭代方法的收敛速度和数据相关性比较
本文定义了一些迭代方法的双曲型。研究了双曲空间中满足一定条件的映射的新迭代收敛性。已经证明了这种迭代在收敛性方面与同一空间中的另一种迭代方法是等价的。比较了这两种迭代方法的收敛速度。我们使用双曲型迭代研究了数据相关性结果。最后,我们给出了收敛速度和数据相关性的数值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信