Global existence and stability for the modified Mullins–Sekerka and surface diffusion flow

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Serena Della Corte, A. Diana, C. Mantegazza
{"title":"Global existence and stability for the modified Mullins–Sekerka and surface diffusion flow","authors":"Serena Della Corte, A. Diana, C. Mantegazza","doi":"10.3934/mine.2022054","DOIUrl":null,"url":null,"abstract":"<abstract><p>In this survey we present the state of the art about the asymptotic behavior and stability of the <italic>modified Mullins</italic>–<italic>Sekerka flow</italic> and the <italic>surface diffusion flow</italic> of smooth sets, mainly due to E. Acerbi, N. Fusco, V. Julin and M. Morini. First we discuss in detail the properties of the nonlocal Area functional under a volume constraint, of which the two flows are the gradient flow with respect to suitable norms, in particular, we define the <italic>strict stability</italic> property for a critical set of such functional and we show that it is a necessary and sufficient condition for minimality under $ W^{2, p} $–perturbations, holding in any dimension. Then, we show that, in dimensions two and three, for initial sets sufficiently \"close\" to a smooth <italic>strictly stable critical</italic> set $ E $, both flows exist for all positive times and asymptotically \"converge\" to a translate of $ E $.</p></abstract>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2022054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

In this survey we present the state of the art about the asymptotic behavior and stability of the modified MullinsSekerka flow and the surface diffusion flow of smooth sets, mainly due to E. Acerbi, N. Fusco, V. Julin and M. Morini. First we discuss in detail the properties of the nonlocal Area functional under a volume constraint, of which the two flows are the gradient flow with respect to suitable norms, in particular, we define the strict stability property for a critical set of such functional and we show that it is a necessary and sufficient condition for minimality under $ W^{2, p} $–perturbations, holding in any dimension. Then, we show that, in dimensions two and three, for initial sets sufficiently "close" to a smooth strictly stable critical set $ E $, both flows exist for all positive times and asymptotically "converge" to a translate of $ E $.

修正Mullins-Sekerka和表面扩散流的全局存在性和稳定性
本文主要介绍了E. Acerbi、N. Fusco、V. Julin和M. Morini等人关于修正Mullins-Sekerka流和光滑集表面扩散流的渐近行为和稳定性的最新研究进展。首先详细讨论了体积约束下的非局部区域泛函的性质,其中两种流是适当范数下的梯度流,特别地,我们定义了这种泛函的临界集的严格稳定性性质,并证明了它是在任意维W^{2, p} $ -摄动下极小性的充分必要条件。然后,我们证明,在维2和维3中,对于足够“接近”光滑严格稳定临界集$ E $的初始集,这两个流在所有正时间都存在,并且渐近地“收敛”到$ E $的平移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信