{"title":"Global existence and stability for the modified Mullins–Sekerka and surface diffusion flow","authors":"Serena Della Corte, A. Diana, C. Mantegazza","doi":"10.3934/mine.2022054","DOIUrl":null,"url":null,"abstract":"<abstract><p>In this survey we present the state of the art about the asymptotic behavior and stability of the <italic>modified Mullins</italic>–<italic>Sekerka flow</italic> and the <italic>surface diffusion flow</italic> of smooth sets, mainly due to E. Acerbi, N. Fusco, V. Julin and M. Morini. First we discuss in detail the properties of the nonlocal Area functional under a volume constraint, of which the two flows are the gradient flow with respect to suitable norms, in particular, we define the <italic>strict stability</italic> property for a critical set of such functional and we show that it is a necessary and sufficient condition for minimality under $ W^{2, p} $–perturbations, holding in any dimension. Then, we show that, in dimensions two and three, for initial sets sufficiently \"close\" to a smooth <italic>strictly stable critical</italic> set $ E $, both flows exist for all positive times and asymptotically \"converge\" to a translate of $ E $.</p></abstract>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2022054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
In this survey we present the state of the art about the asymptotic behavior and stability of the modified Mullins–Sekerka flow and the surface diffusion flow of smooth sets, mainly due to E. Acerbi, N. Fusco, V. Julin and M. Morini. First we discuss in detail the properties of the nonlocal Area functional under a volume constraint, of which the two flows are the gradient flow with respect to suitable norms, in particular, we define the strict stability property for a critical set of such functional and we show that it is a necessary and sufficient condition for minimality under $ W^{2, p} $–perturbations, holding in any dimension. Then, we show that, in dimensions two and three, for initial sets sufficiently "close" to a smooth strictly stable critical set $ E $, both flows exist for all positive times and asymptotically "converge" to a translate of $ E $.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.