Dong Sun, J. Cruz, M. Alcalà, R. Romero del Castillo, Silvia Sans, J. Casals
{"title":"Near infrared spectroscopy determination of chemical and sensory properties in tomato","authors":"Dong Sun, J. Cruz, M. Alcalà, R. Romero del Castillo, Silvia Sans, J. Casals","doi":"10.1177/09670335211018759","DOIUrl":null,"url":null,"abstract":"Fast and massive characterization of quality attributes in tomatoes is a necessary step toward its improvement; for sensory attributes this process is time-consuming and very expensive, which causes its absence in routine phenotpying. We aimed to assess the feasibility of near infrared (NIR) spectroscopy as a fast and economical tool to predict both the chemical and sensory properties of tomatoes. We built partial least squares models from spectra recorded from tomato puree and juice in 53 genetically diverse varieties grown in two environments. Samples were divided in calibration (210 samples for chemical traits, 45 samples for sensory traits) and validation sets (60 and 10, respectively) using the Kennard Stone algorithm. Models from puree spectra gave validation r2 values higher than 0.97 for fructose, glucose, soluble solids content, and dry matter (relative standard error of prediction, RSEP% ranged 3.5–5.8), while r2 values for sensory properties were lower (ranging 0.702–0.917 for taste-related traits (RSEP%: 9.1–20.0), and 0.009–0.849 for texture related traits (RSEP%: 3.6–72.1)). For sensory traits such as explosiveness, juiciness, sweetness, acidity, taste intensity, aroma intensity, and mealiness, NIR spectroscopy is potentially useful for scanning large collections of samples to identify likely candidates to select for tomato quality.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/09670335211018759","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335211018759","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Fast and massive characterization of quality attributes in tomatoes is a necessary step toward its improvement; for sensory attributes this process is time-consuming and very expensive, which causes its absence in routine phenotpying. We aimed to assess the feasibility of near infrared (NIR) spectroscopy as a fast and economical tool to predict both the chemical and sensory properties of tomatoes. We built partial least squares models from spectra recorded from tomato puree and juice in 53 genetically diverse varieties grown in two environments. Samples were divided in calibration (210 samples for chemical traits, 45 samples for sensory traits) and validation sets (60 and 10, respectively) using the Kennard Stone algorithm. Models from puree spectra gave validation r2 values higher than 0.97 for fructose, glucose, soluble solids content, and dry matter (relative standard error of prediction, RSEP% ranged 3.5–5.8), while r2 values for sensory properties were lower (ranging 0.702–0.917 for taste-related traits (RSEP%: 9.1–20.0), and 0.009–0.849 for texture related traits (RSEP%: 3.6–72.1)). For sensory traits such as explosiveness, juiciness, sweetness, acidity, taste intensity, aroma intensity, and mealiness, NIR spectroscopy is potentially useful for scanning large collections of samples to identify likely candidates to select for tomato quality.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.