A mixed volume from the anisotropic Riesz‐potential

IF 1.1 Q1 MATHEMATICS
S. Hou, J. Xiao, Deping Ye
{"title":"A mixed volume from the anisotropic Riesz‐potential","authors":"S. Hou, J. Xiao, Deping Ye","doi":"10.1112/tlm3.12012","DOIUrl":null,"url":null,"abstract":"As a geometrical understanding of the maximal gravitational potential in computational and mathematical physics, this paper investigates a mixed volume induced by the so‐called anisotropic Riesz‐potential and establishes a reverse Minkowski‐type inequality. It turns out that such a mixed volume is equal to the anisotropic Riesz‐capacity and has connections with the anisotropic sup‐Riesz‐potential space. Two restrictions on the Lorentz spaces in terms of the anisotropic Riesz‐capacity are also characterized. Besides, we also prove a Minkowski‐type inequality and a log‐Minkowski‐type inequality as well as its reverse form.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12012","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

As a geometrical understanding of the maximal gravitational potential in computational and mathematical physics, this paper investigates a mixed volume induced by the so‐called anisotropic Riesz‐potential and establishes a reverse Minkowski‐type inequality. It turns out that such a mixed volume is equal to the anisotropic Riesz‐capacity and has connections with the anisotropic sup‐Riesz‐potential space. Two restrictions on the Lorentz spaces in terms of the anisotropic Riesz‐capacity are also characterized. Besides, we also prove a Minkowski‐type inequality and a log‐Minkowski‐type inequality as well as its reverse form.
各向异性Riesz势的混合体积
作为对计算和数学物理学中最大引力势的几何理解,本文研究了由所谓的各向异性Riesz势引起的混合体积,并建立了一个逆Minkowski型不等式。事实证明,这种混合体积等于各向异性的Riesz容量,并与各向异性的sup‐Riesz‐势空间有关。还刻画了洛伦兹空间在各向异性Riesz容量方面的两个限制。此外,我们还证明了一个Minkowski型不等式和一个log型不等式及其反形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信