Muhammad Abubakar Siddique, A. Kashif, M. Shoaib, S. Hussain
{"title":"Stability Analysis of the Rhomboidal Restricted Six-Body Problem","authors":"Muhammad Abubakar Siddique, A. Kashif, M. Shoaib, S. Hussain","doi":"10.1155/2021/5575826","DOIUrl":null,"url":null,"abstract":"<jats:p>We discuss the restricted rhomboidal six-body problem (RR6BP), which has four positive masses at the vertices of the rhombus, and the fifth mass is at the intersection of the two diagonals. These masses always move in rhomboidal CC with diagonals <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mn>2</mn>\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mn>2</mn>\n <mi>b</mi>\n </math>\n </jats:inline-formula>. The sixth body, having a very small mass, does not influence the motion of the five masses, also called primaries. The masses of the primaries are <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mi>m</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mover accent=\"true\">\n <mi>m</mi>\n <mo>˜</mo>\n </mover>\n </math>\n </jats:inline-formula>. The masses <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>m</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mover accent=\"true\">\n <mi>m</mi>\n <mo>˜</mo>\n </mover>\n </math>\n </jats:inline-formula> are written as functions of parameters <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>b</mi>\n </math>\n </jats:inline-formula> such that they always form a rhomboidal central configuration. The evolution of zero velocity curves is discussed for fixed values of positive masses. Using the first integral of motion, we derive the region of possible motion of test particle <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and identify the value of Jacobian constant <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>C</mi>\n </math>\n </jats:inline-formula> for different energy intervals at which these regions become disconnected. Using semianalytical techniques, we show the existence and uniqueness of equilibrium solutions on the axes and off the axes. We show that, for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>b</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <msqrt>\n <mn>3</mn>\n </msqrt>\n <mo>,</mo>\n <mn>1.1394282249562009</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, there always exist 12 equilibrium points. We also show that all 12 equilibrium points are unstable.</jats:p>","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/5575826","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4
Abstract
We discuss the restricted rhomboidal six-body problem (RR6BP), which has four positive masses at the vertices of the rhombus, and the fifth mass is at the intersection of the two diagonals. These masses always move in rhomboidal CC with diagonals and . The sixth body, having a very small mass, does not influence the motion of the five masses, also called primaries. The masses of the primaries are and . The masses and are written as functions of parameters and such that they always form a rhomboidal central configuration. The evolution of zero velocity curves is discussed for fixed values of positive masses. Using the first integral of motion, we derive the region of possible motion of test particle and identify the value of Jacobian constant for different energy intervals at which these regions become disconnected. Using semianalytical techniques, we show the existence and uniqueness of equilibrium solutions on the axes and off the axes. We show that, for , there always exist 12 equilibrium points. We also show that all 12 equilibrium points are unstable.
期刊介绍:
Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.