Grade estimation by a machine learning model using coordinate rotations

IF 0.9 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Gamze Erdogan Erten, M. Yavuz, C. Deutsch
{"title":"Grade estimation by a machine learning model using coordinate rotations","authors":"Gamze Erdogan Erten, M. Yavuz, C. Deutsch","doi":"10.1080/25726838.2021.1872822","DOIUrl":null,"url":null,"abstract":"ABSTRACT Machine learning (ML) models provide useful tools to generate spatial estimations of geological features, but they do not consider the spatial dependence among the observations and they primarily use coordinates as predictors. Thus, many ML models produce visible artifacts in the resulting estimates along the coordinate directions. To overcome this significant problem, this paper presents an ensemble super learner (ESL) model which uses the super learner (SL) model as the ML model. In the ESL model, numerous training sets are created from the original dataset by a coordinate rotation strategy and then the estimates obtained from the fitted SL models are ensembled to produce a final estimate. A dataset from a high-grade gold deposit demonstrates the approach and compares the results to kriging and the SL model. The results demonstrate that the ESL model manages artifacts in ML spatial estimation. It also provides better results than the kriging and SL model in terms of estimation accuracy.","PeriodicalId":43298,"journal":{"name":"Applied Earth Science-Transactions of the Institutions of Mining and Metallurgy","volume":"130 1","pages":"57 - 66"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25726838.2021.1872822","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Earth Science-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726838.2021.1872822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Machine learning (ML) models provide useful tools to generate spatial estimations of geological features, but they do not consider the spatial dependence among the observations and they primarily use coordinates as predictors. Thus, many ML models produce visible artifacts in the resulting estimates along the coordinate directions. To overcome this significant problem, this paper presents an ensemble super learner (ESL) model which uses the super learner (SL) model as the ML model. In the ESL model, numerous training sets are created from the original dataset by a coordinate rotation strategy and then the estimates obtained from the fitted SL models are ensembled to produce a final estimate. A dataset from a high-grade gold deposit demonstrates the approach and compares the results to kriging and the SL model. The results demonstrate that the ESL model manages artifacts in ML spatial estimation. It also provides better results than the kriging and SL model in terms of estimation accuracy.
使用坐标旋转的机器学习模型进行等级估计
摘要机器学习(ML)模型为生成地质特征的空间估计提供了有用的工具,但它们不考虑观测值之间的空间相关性,主要使用坐标作为预测因子。因此,许多ML模型在沿着坐标方向的结果估计中产生可见的伪影。为了克服这一重要问题,本文提出了一种集成超级学习器(ESL)模型,该模型使用超级学习器模型作为ML模型。在ESL模型中,通过坐标旋转策略从原始数据集创建大量训练集,然后将从拟合的SL模型获得的估计值进行集合,以产生最终估计值。一个来自高品位金矿床的数据集演示了该方法,并将结果与克里格法和SL模型进行了比较。结果表明,ESL模型能够管理ML空间估计中的伪影。在估计精度方面,它也提供了比克里格和SL模型更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信