Smallworldness in hypergraphs

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Tanu Raghav, S. Boccaletti, S. Jalan
{"title":"Smallworldness in hypergraphs","authors":"Tanu Raghav, S. Boccaletti, S. Jalan","doi":"10.1088/2632-072X/acf430","DOIUrl":null,"url":null,"abstract":"Most real-world networks are endowed with the small-world property, by means of which the maximal distance between any two of their nodes scales logarithmically rather than linearly with their size. The evidence sparkled a wealth of studies trying to reveal possible mechanisms through which the pairwise interactions amongst the units of a network are structured in a way to determine such observed regularity. Here we show that smallworldness occurs also when interactions are of higher order. Namely, by considering Q-uniform hypergraphs and a process through which connections can be randomly rewired with given probability p, we find that such systems may exhibit prominent clustering properties in connection with small average path lengths for a wide range of p values, in analogy to the case of dyadic interactions. The nature of small-world transition remains the same at different orders Q ( =2,3,4,5, and 6) of the interactions, however, the increase in the hyperedge order reduces the range of rewiring probability for which smallworldness emerge.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072X/acf430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Most real-world networks are endowed with the small-world property, by means of which the maximal distance between any two of their nodes scales logarithmically rather than linearly with their size. The evidence sparkled a wealth of studies trying to reveal possible mechanisms through which the pairwise interactions amongst the units of a network are structured in a way to determine such observed regularity. Here we show that smallworldness occurs also when interactions are of higher order. Namely, by considering Q-uniform hypergraphs and a process through which connections can be randomly rewired with given probability p, we find that such systems may exhibit prominent clustering properties in connection with small average path lengths for a wide range of p values, in analogy to the case of dyadic interactions. The nature of small-world transition remains the same at different orders Q ( =2,3,4,5, and 6) of the interactions, however, the increase in the hyperedge order reduces the range of rewiring probability for which smallworldness emerge.
超图中的小世界性
大多数现实世界的网络都具有小世界特性,即网络中任意两个节点之间的最大距离与网络大小成对数关系,而不是线性关系。这些证据激发了大量的研究,试图揭示可能的机制,通过这种机制,网络单元之间的成对相互作用以某种方式确定了这种观察到的规律性。在这里,我们表明小世界也会发生在高阶互动中。也就是说,通过考虑q -均匀超图和一个连接可以在给定概率p下随机重新连接的过程,我们发现这样的系统在广泛的p值范围内具有较小的平均路径长度时可能表现出突出的聚类性质,类似于二元相互作用的情况。在不同阶次Q(=2、3、4、5和6)的相互作用下,小世界转换的性质保持不变,但是,超边缘阶次的增加减少了小世界出现的重新布线概率的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信