Yong Chae Kim, Taehun Kim, J. U. Ko, Jinwook Lee, Keon Kim
{"title":"Domain Adaptation based Fault Diagnosis under Variable Operating Conditions of a Rock Drill","authors":"Yong Chae Kim, Taehun Kim, J. U. Ko, Jinwook Lee, Keon Kim","doi":"10.36001/ijphm.2023.v14i2.3425","DOIUrl":null,"url":null,"abstract":"Data-driven fault diagnosis is an essential technology for the safety and maintenance of rock drills. However, since the signals acquired from a rock drill have different distributions, which arise due to their variable operating conditions, the classification performance of any data-driven method is diminished; this is called the domain-shift issue. This paper proposes a new domain-adaptation-based fault diagnosis scheme to solve the domain-shift problem. The proposed method introduces a data-cropping technique to mitigate the difference in the length of the data measured from a rock drill for each impact cycle. To extract invariant features for all operating conditions, the proposed method combines two methods: a domain adversarial neural network and minimization of the maximum mean discrepancy (MMD) between the features from different domains. In addition, a soft voting ensemble is used to reduce the model uncertainty. The proposed method shows superior performance when validated with a rock drill dataset; the proposed approach was ranked in 2nd place in the 2022 PHM Conference Data Challenge.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2023.v14i2.3425","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven fault diagnosis is an essential technology for the safety and maintenance of rock drills. However, since the signals acquired from a rock drill have different distributions, which arise due to their variable operating conditions, the classification performance of any data-driven method is diminished; this is called the domain-shift issue. This paper proposes a new domain-adaptation-based fault diagnosis scheme to solve the domain-shift problem. The proposed method introduces a data-cropping technique to mitigate the difference in the length of the data measured from a rock drill for each impact cycle. To extract invariant features for all operating conditions, the proposed method combines two methods: a domain adversarial neural network and minimization of the maximum mean discrepancy (MMD) between the features from different domains. In addition, a soft voting ensemble is used to reduce the model uncertainty. The proposed method shows superior performance when validated with a rock drill dataset; the proposed approach was ranked in 2nd place in the 2022 PHM Conference Data Challenge.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.