K. Lazer, Ian P. Stout, E. Simpson, M. Wizevich, Abigal M. Keebler, Grace Hetrick
{"title":"PRESERVED MEMBRANE ON DINOSAUR EGGSHELL FRAGMENTS, UPPER JURASSIC MORRISON FORMATION, EASTERN UTAH","authors":"K. Lazer, Ian P. Stout, E. Simpson, M. Wizevich, Abigal M. Keebler, Grace Hetrick","doi":"10.2110/palo.2022.002","DOIUrl":null,"url":null,"abstract":"Abstract: Dinosaur eggshell fragments, from the Upper Jurassic Brushy Basin Member of the Morrison Formation, Utah, were examined using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectroscopy, and Raman Spectroscopy. Analyses revealed that the mammillary tips on the shell interior contain carbonaceous residue. Comparison under the FESEM of these shells with modern bird shells, including some samples heated to diagenetic temperatures, indicate that the residue is degraded organic compounds (DOC). Bird egg membrane is composed of interlaced collagen fibers. Features observed on, and common to, modern bird and dinosaur egg fragments include: (1) irregular-shaped calcium carbonate grains “floating” in an organic matrix; (2) three-dimensional organic fiber matrix; (3) external calcium carbonate molds of fibers in the mammillary bodies; and in heated specimens, (4) carbonaceous residue with ovate to circular pores. However, unlike birds' eggs, the dinosaur eggs contain a calcium carbonate tube around fibrous organic material that emerges from the tube and spreads laterally in a ‘puddle-like’ deposit. The sizes of circular organic matrix pores of the dinosaur egg fragments are significantly smaller than those in the bird shells. Gallus gallus domesticus eggshell membranes heated to diagenetic temperatures resulted in alteration of collagen fibers to gel-like substances. The organic matrix with ovate to circular pore openings and the puddle-like deposits in the dinosaur egg fragments are interpreted as the product of membrane thermal diagenesis. The recognition of carbonaceous residue of the shell membrane on dinosaur shell fragments opens newfound opportunities to explore DOC associated with fragmental dinosaur eggs.","PeriodicalId":54647,"journal":{"name":"Palaios","volume":"38 1","pages":"43 - 55"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaios","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/palo.2022.002","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Dinosaur eggshell fragments, from the Upper Jurassic Brushy Basin Member of the Morrison Formation, Utah, were examined using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectroscopy, and Raman Spectroscopy. Analyses revealed that the mammillary tips on the shell interior contain carbonaceous residue. Comparison under the FESEM of these shells with modern bird shells, including some samples heated to diagenetic temperatures, indicate that the residue is degraded organic compounds (DOC). Bird egg membrane is composed of interlaced collagen fibers. Features observed on, and common to, modern bird and dinosaur egg fragments include: (1) irregular-shaped calcium carbonate grains “floating” in an organic matrix; (2) three-dimensional organic fiber matrix; (3) external calcium carbonate molds of fibers in the mammillary bodies; and in heated specimens, (4) carbonaceous residue with ovate to circular pores. However, unlike birds' eggs, the dinosaur eggs contain a calcium carbonate tube around fibrous organic material that emerges from the tube and spreads laterally in a ‘puddle-like’ deposit. The sizes of circular organic matrix pores of the dinosaur egg fragments are significantly smaller than those in the bird shells. Gallus gallus domesticus eggshell membranes heated to diagenetic temperatures resulted in alteration of collagen fibers to gel-like substances. The organic matrix with ovate to circular pore openings and the puddle-like deposits in the dinosaur egg fragments are interpreted as the product of membrane thermal diagenesis. The recognition of carbonaceous residue of the shell membrane on dinosaur shell fragments opens newfound opportunities to explore DOC associated with fragmental dinosaur eggs.
期刊介绍:
PALAIOS is a monthly journal, founded in 1986, dedicated to emphasizing the impact of life on Earth''s history as recorded in the paleontological and sedimentological records. PALAIOS disseminates information to an international spectrum of geologists and biologists interested in a broad range of topics, including, but not limited to, biogeochemistry, ichnology, paleoclimatology, paleoecology, paleoceanography, sedimentology, stratigraphy, geomicrobiology, paleobiogeochemistry, and astrobiology.
PALAIOS publishes original papers that emphasize using paleontology to answer important geological and biological questions that further our understanding of Earth history. Accordingly, manuscripts whose subject matter and conclusions have broader geologic implications are much more likely to be selected for publication. Given that the purpose of PALAIOS is to generate enthusiasm for paleontology among a broad spectrum of readers, the editors request the following: titles that generate immediate interest; abstracts that emphasize important conclusions; illustrations of professional caliber used in place of words; and lively, yet scholarly, text.