Quasi-isometry invariance of relative filling functions

Pub Date : 2021-07-07 DOI:10.4171/ggd/737
Sam Hughes, Eduardo Mart'inez-Pedroza, Luis Jorge S'anchez Saldana
{"title":"Quasi-isometry invariance of relative filling functions","authors":"Sam Hughes, Eduardo Mart'inez-Pedroza, Luis Jorge S'anchez Saldana","doi":"10.4171/ggd/737","DOIUrl":null,"url":null,"abstract":"For a finitely generated group $G$ and collection of subgroups $\\mathcal{P}$ we prove that the relative Dehn function of a pair $(G,\\mathcal{P})$ is invariant under quasi-isometry of pairs. Along the way we show quasi-isometries of pairs preserve almost malnormality of the collection and fineness of the associated coned off Cayley graphs. We also prove that for a cocompact simply connected combinatorial $G$-$2$-complex $X$ with finite edge stabilisers, the combinatorial Dehn function is well-defined if and only if the $1$-skeleton of $X$ is fine. We also show that if $H$ is a hyperbolically embedded subgroup of a finitely presented group $G$, then the relative Dehn function of the pair $(G, H)$ is well-defined. In the appendix, it is shown that show that the Baumslag-Solitar group $\\mathrm{BS}(k,l)$ has a well-defined Dehn function with respect to the cyclic subgroup generated by the stable letter if and only if neither $k$ divides $l$ nor $l$ divides $k$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

For a finitely generated group $G$ and collection of subgroups $\mathcal{P}$ we prove that the relative Dehn function of a pair $(G,\mathcal{P})$ is invariant under quasi-isometry of pairs. Along the way we show quasi-isometries of pairs preserve almost malnormality of the collection and fineness of the associated coned off Cayley graphs. We also prove that for a cocompact simply connected combinatorial $G$-$2$-complex $X$ with finite edge stabilisers, the combinatorial Dehn function is well-defined if and only if the $1$-skeleton of $X$ is fine. We also show that if $H$ is a hyperbolically embedded subgroup of a finitely presented group $G$, then the relative Dehn function of the pair $(G, H)$ is well-defined. In the appendix, it is shown that show that the Baumslag-Solitar group $\mathrm{BS}(k,l)$ has a well-defined Dehn function with respect to the cyclic subgroup generated by the stable letter if and only if neither $k$ divides $l$ nor $l$ divides $k$.
分享
查看原文
相对填充函数的拟等距不变性
对于有限生成群$G$和子群$\mathcal{P}$证明了一对$(G,\mathcal{P})$的相对Dehn函数在对的拟等距下是不变的。在此过程中,我们证明了对的拟等距保持了相关锥离凯莱图集合的几乎异常性和精细性。我们还证明了对于具有有限边稳定器的紧单连通组合$G$-$2$- $X$,当且仅当$X$的$1$-骨架良好时,组合Dehn函数是定义良好的。如果$H$是有限表示群$G$的双曲嵌入子群,则对$(G, H)$的相对Dehn函数是定义良好的。在附录中,证明了对于由稳定字母生成的循环子群,baumslg - solitar群$\ mathm {BS}(k,l)$有一个定义良好的Dehn函数,当且仅当$k$不能除$l$和$l$不能除$k$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信