Controlling the interfacial dipole via functionalization of quinoxaline-based small molecules for electron transport layer in organic light emitting diodes

IF 3.7 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Seok Woo Lee, Xiangyang Fan, D. Whang, J. Jang, Hyosung Choi, D. Chang, B. Lee
{"title":"Controlling the interfacial dipole via functionalization of quinoxaline-based small molecules for electron transport layer in organic light emitting diodes","authors":"Seok Woo Lee, Xiangyang Fan, D. Whang, J. Jang, Hyosung Choi, D. Chang, B. Lee","doi":"10.1080/15980316.2023.2171145","DOIUrl":null,"url":null,"abstract":"Optoelectronic devices with organic semiconductors, such as organic light-emitting diodes (OLEDs), have received much attention because they offer ease of processing and device flexibility. However, practical application of these devices is still hindered by relatively poor device performance and lack of cost-effective fabrication process, which represent properties largely determined by the molecular dipole moments of the organic molecules. In this study, we designed and prepared novel quinoxaline-phosphine oxide small molecules (QPSMs) as the electron transport layer (ETL) for the solution-processable OLEDs by tuning the end functional group of the aromatic QPSMs. A key design criterion was controlling the dipole moments of QPSMs, which confers (1) convenient deposition on the emission layer without further annealing through solubility in isopropanol and (2) improved electron injection/transport behavior through effective band level matching of the devices. In particular, the optimized OLEDs with (4-(2,3-bis(4-methoxyphenyl)quinoxalin-5-yl)phenyl)diphenylphosphine oxide (MQxTPPO1) exhibit external quantum efficiency (EQE) of 6.12%. Our results demonstrate the potential application of QPSMs as next-generation ETLs in organic semiconductors.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Display","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15980316.2023.2171145","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Optoelectronic devices with organic semiconductors, such as organic light-emitting diodes (OLEDs), have received much attention because they offer ease of processing and device flexibility. However, practical application of these devices is still hindered by relatively poor device performance and lack of cost-effective fabrication process, which represent properties largely determined by the molecular dipole moments of the organic molecules. In this study, we designed and prepared novel quinoxaline-phosphine oxide small molecules (QPSMs) as the electron transport layer (ETL) for the solution-processable OLEDs by tuning the end functional group of the aromatic QPSMs. A key design criterion was controlling the dipole moments of QPSMs, which confers (1) convenient deposition on the emission layer without further annealing through solubility in isopropanol and (2) improved electron injection/transport behavior through effective band level matching of the devices. In particular, the optimized OLEDs with (4-(2,3-bis(4-methoxyphenyl)quinoxalin-5-yl)phenyl)diphenylphosphine oxide (MQxTPPO1) exhibit external quantum efficiency (EQE) of 6.12%. Our results demonstrate the potential application of QPSMs as next-generation ETLs in organic semiconductors.
有机发光二极管中电子传递层喹啉基小分子功能化控制界面偶极子
具有有机半导体的光电子器件,如有机发光二极管(OLED),因其易于加工和器件灵活性而备受关注。然而,这些器件的实际应用仍然受到相对较差的器件性能和缺乏成本效益高的制造工艺的阻碍,这在很大程度上代表了由有机分子的分子偶极矩决定的性质。在本研究中,我们通过调节芳香族QPSM的末端官能团,设计并制备了新型的喹喔啉氧化膦小分子(QPSM)作为溶液可加工OLED的电子传输层(ETL)。一个关键的设计标准是控制QPSM的偶极矩,这使得(1)在发射层上方便地沉积,而无需通过在异丙醇中的溶解度进行进一步退火;(2)通过器件的有效带级匹配改善电子注入/传输行为。特别是,具有(4-(2,3-双(4-甲氧基苯基)喹喔啉-5-基)苯基)二苯基氧化膦(MQxTPPO1)的优化OLED表现出6.12%的外量子效率(EQE)。我们的结果证明了QPSM作为下一代ETL在有机半导体中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Information Display
Journal of Information Display MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.10
自引率
5.40%
发文量
27
审稿时长
30 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信